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The Uncertainty Principle

An experiment cannot simultaneously determine a component of the momentum of a particle, px, and
the exact value of the corresponding coordinate, x.

The best one can do is

∆px∆x ≥ ~

1. The limitations imposed by the uncertainty principle have nothing to do with the quality of the
experimental instrument.

2. The uncertainty principle does not say that one cannot determine the position or the momentum
exactly. However, if ∆x = 0, then the uncertainty in the momentum will be infinite, and vice versa.

3. The uncertainty principle is a direct consequence of de Broglie’s hypothesis, which, as we have
seen, is confirmed by experiment. Thus the uncertainty principle is based on experiment.

An Example of Moon
Mass of the moon = 6 × 1022kg,
average orbital velocity = 103m/sec.

Suppose that we are able to determine the position of the moon with an uncertainty ∆x = 10−6m

Then,

∆px ≥
~

∆x
=

10−34

10−6 = 10−28kg m/sec

Because by definition px = mvx it follows that

∆vx =
∆px

m
≥

10−28

6 × 1022 ≈ 10−50m/sec

This is an insignificant error when we compare it with the measured value of v = 103m/sec.

An Example of Electron
• Consider an electron in the hydrogen atom.

• Smallest radius of a Bohr orbit is approximately 0.5 × 10−10m.

• Let ∆x ≈ 10−10m (The electron can be anywhere in the orbit, and therefore x can take any value
between −0.5x10−10m and +0.5x10−10m)

∆px ≥
~

∆x
=

10−34

10−10 = 10−24kg m/sec

• The KE of electron is 13.6eV (Look at previous class-notes)

Ek = 13.6eV = 13.6 × 1.6 × 10−19 = 2.18 × 10−18 J

p =
√

2mEk =
√

2 × 9.1 × 10−31 × 2.18 × 10−18 = 2 × 10−24kg m/sec

∆px

px
=

10−24

2 × 10−24 = 0.5 = 50%

Numerical Problems
1. A small particle of mass 10−6g moves along the x axis; its speed is uncertain by 10−6m/sec. (a) What

is the uncertainty in the x coordinate of the particle? (b) Repeat the calculation for an electron
assuming that the uncertainty in its velocity is also 10−6m/sec.
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2. The uncertainty in the position of a particle is equal to the de Broglie wavelength of the particle.
Calculate the uncertainty in the velocity of the particle in terms of the velocity of the de Broglie
wave associated with the particle.

Physical Origin of the Uncertainty Principle

Figure 1: “Looking” at an electron with a hypothet-
ical microscope in Bohr’s thought experiment. The
electron is illuminated with light (photons) The pho-
tons scattered by the electron that enter the objec-
tive lens of the microscope are detected by the eye
of the observer.

∆px(photon) = 2pphoton sinφ

Conservation of linear momentum:

∆px(electron) = 2pphoton sinφ

∆px(electron) = 2
h
λ

sinφ

In the process of locating the electron, we
have introduced an uncertainty in its momen-
tum.

We could reduce the uncertainty in px of the
electron in two ways.

• use photons of longer wavelength
• reduce φ, the angle subtended by the lens:

make aperture of the lens small.
Both these factors that would reduce the un-

certainty in px lead to an increase in the uncer-
tainty of the position of the electron that we are
trying to locate.

Longer wavelengths and smaller lens aper-
ture will increase the uncertainty about the ori-
gin of the photon entering the microscope, that
is, about the position of the scattering electron.
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Matter Waves and the Uncertainty Principle
Equation of a wave is given by

ψ(x, t) = A sin (kx − ωt)

Amplitude A ; Wavelength λ = 2π
k ; Frequency ν = ω

2π ; Velocity v = λν = 2π
k
ω
2π

Can we associate this wave with a free particle? We have seen that to describe a localized particle we
can use a wave packet according to de Broglie hypothesis. Because the wave packet accompanies the
particle and tells us approximately where the particle may be found, it must travel with the same velocity
as the particle.

Let us take two traveling waves that differ slightly in wavelength and frequency,

ψ1 = A sin [kx − ωt] · · · · · · · · · (1)

ψ2 = A sin [(k + ∆k)x − (ω + ∆ω)t] · · · · · · · · · (2)

where ∆k << k and ∆ω << ω
The resulting ψ(x, t) will be

ψ(x, t) = ψ1 + ψ2

ψ(x, t) = A sin [kx − ωt] + A sin [(k + ∆k)x − (ω + ∆ω)t]

If we use the trigonometric relation

sin A + sin B = 2 sin
A + B

2
cos

A − B
2

we get

ψ(x, t) = 2A cos
(
∆kx − ∆ωt

2

)
sin (kx − ωt) · · · · · · · · · (3)

where we have used the approximation 2k + ∆k ≈ 0, 2ω + ∆ω ≈ 2ω.

Figure 2: A “snapshot” of a wave with a periodi-
cally varying amplitude. Such a wave is obtained
by adding two sinusoidal traveling waves of slightly
different frequency and wavelength.

The resulting wave is thus the product of two
traveling waves. The second term of Eq. (3)
represents a wave having roughly the same fre-
quency and wavelength as the original waves.
The first term represents a wave having a much
larger wavelength and much smaller frequency.

We can consider ψ as a wave similar to the
original ones except that its amplitude is mod-
ulated by the first term, giving rise to a period-
ically varying amplitude. A ”snapshot” of ψ is
shown in Figure. Such a ψ could be used to de-
scribe a beam of particles, with one particle in
each wave packet. The velocity of the wave in-
side the envelopes is the same as the velocity of
the individual waves. The envelops (that is, the
wave packets) travel with velocity, called group
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velocity, vgroup, given by

vgroup =
∆ω
2

∆k
2

=
∆ω
∆k
≈

dω
dk
· · · · · · · · · (4)

We can show that vgroup is the same as the velocity of the particle, by using de Broglie’s relations,

λ =
h
p

and λ =
2π
k

; ⇒ k =
p
~
⇒ dk =

dp
~

And,

ν =
E
h

and ν =
ω
2π

; ⇒ ω =
E
~
⇒ dω =

dE
~

Therefore, from equation (4),

vgroup =
dE
dp
· · · · · · · · · (5)

But we know that E = 1
2 mv2

particle =
p2

2m ;

E =
p2

2m
⇒

dE
dp

=
p
m

=
mvparticle

m
= vparticle · · · · · · · · · (6)

From equation (5) and (6) we get,

vgroup = vparticle

The wave packet moves with the particle.
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Numerical Problems to Practice
1. After being excited, the electron of a hydrogen atom eventually falls back to the ground state. This

can take place in one jump or in a series of jumps, the electron falling into lower excited states
before it ends up in the ground state. Consider a hydrogen atom that has been raised to the second
excited state, that is, n = 3. Calculate the different photon energies that may be emitted as the
atom returns to the ground state.

2. Calculate the shortest and the longest wavelength of the Balmer series of hydrogen.
3. What are (a) the energy, (b) the momentum, and (c) the wavelength of the photon that is emitted

when a hydrogen atom undergoes a transition from the state n = 3 to n = 1 ? (The momentum of
the photon is given by hν/c).

4. The shortest wavelength of the Paschen series from hydrogen is 8204Å. From this fact, calculate
the Rydberg constant.

5. The ground-state and the first excited-state energies of potassium atoms are −4.3eV and −2.7eV,
respectively. If we use potassium vapor in the Franck-Hertz experiment, at what voltages would
we see drops in the plot of current versus voltage?

6. A beam of monochromatic neutrons is incident on a KCl crystal with lattice spacing of 3.14Å. The
first-order diffraction maximum is observed when the angle θ between the incident beam and the
atomic planes is 37◦. What is the kinetic energy of the neutrons?

7. The de Broglie wavelength of a proton is 10−13m. (a) What is the speed of the proton? (b) Through
what potential difference must the proton be accelerated to acquire such a speed?

8. An α particle is emitted from a nucleus with an energy of 5MeV(5 × 106eV). Calculate the wave-
length of an α particle with such energy and compare it with the size of the emitting nucleus that
has a radius of 8 × 10−15m.

9. In neutron spectroscopy a beam of monoenergetic neutrons is obtained by reflecting reactor neu-
trons from a beryllium crystal. If the separation between the atomic planes of the beryllium crystal
is 0.732Å, what is the angle between the incident neutron beam and the atomic planes that will
yield a monochromatic beam of neutrons of wavelength 0.1Å?

10. A small particle of mass 10−6g moves along the x axis; its speed is uncertain by 10−6m/sec. (a) What
is the uncertainty in the x coordinate of the particle? (b) Repeat the calculation for an electron
assuming that the uncertainty in its velocity is also 10−6m/sec.

11. The uncertainty in the position of a particle is equal to the de Broglie wavelength of the particle.
Calculate the uncertainty in the velocity of the particle in terms of the velocity of the de Broglie
wave associated with the particle.
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Schrodinger theory of quantum mechanics and its application
In trying to find the wave associated with the particle, de Broglie’s postulates give us the first guideline.
We have seen that if a particle has a well-defined momentum and energy, we can use a sinusoidal
traveling wave, that is, either

ψ = A sin(kx − wt) or ψ = A cos(kx − wt)

or a linear combination of both. As we have seen, if we want to describe a free particle, which is partially
localized, we could use a wave packet.

De Broglie’s hypothesis does not tell us what type of wave one can associate with a particle that is
not free and that is acted on by a force. If a particle is acted on by a force, its momentum and its energy
will not be constant. Therefore, it is meaningless to talk about a λ and a ν, because these quantities
are changing. The Schrodinger theory tells us how to obtain the wavefunction ψ(x, t) associated with
a particle, when we specify the forces acting on the particle, by giving the potential energy associated
with the forces. (In quantum mechanics the potential energy is often referred to simply as the potential).
The Schrodinger theory also tells us how to extract information about the particle from the associated
wavefunction.

Schrodinger developed a differential equation whose solutions yield the possible wavefunctions that
can be associated with a particle in a given physical situation. This equation, known as the Schrodinger
equation, tells us how the wavefunction changes as a result of the forces acting on the particle. Because
the wavefunction ψ is a function of space and time, the equation contains derivatives (remember that a
derivative represents the rate of change) with respect to x, y, and z and with respect to t.

The total energy of a particle is equal to the kinetic energy plus the potential energy,

E =
1
2

mv2 + Ep =
p2

2m
+ Ep

Therefore,

Eψ =
p2

2m
ψ + Epψ · · · · · · · · · (1)

In quantum mechanics physical observables are generally expressed as operators. Operators for some of
the observables are

Observable Operator

Energy(E) → i~
∂
∂t

Momentum(p) → −i~
∂
∂x

Substituting the operators in equation (1), we get,

i~
∂ψ

∂t
=

1
2m

(
−i~

∂
∂x

) (
−i~

∂
∂x

)
ψ + Epψ

i~
∂ψ

∂t
= −
~2

2m
∂2ψ

∂x2 + Epψ
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−
~2

2m
∂2ψ

∂x2 + Epψ = i~
∂ψ

∂t
· · · · · · · · · (2)

Equation (2) is known as the one-dimensional time-dependent Schrodinger equation. If the potential
energy Ep is known, this equation can be solved in principle, and the solution will yield the possible
wavefunctions that we can associate with the particle. The Schrodinger equation is to quantum mechan-
ics what Newton’s second law is to classical physics.

The Schrodinger Equation for a Free Particle
Let us consider a free particle moving along the x axis with definite momentum p = mv and definite
energy E = 1/2mv2. If no force acts on the particle, that is, F = 0, the potential energy is Ep = constant,
which we can choose to be 0. Thus, the condition F = 0 requires that E = constant. The Schrodinger
equation (Eq. 2) in this case may be written for Ep = 0 as

−
~2

2m
∂2ψ

∂x2 = i~
∂ψ

∂t
· · · · · · · · · (3)

As mentioned at the beginning of Section 20.2a, because we are dealing with a particle of well-defined
momentum and energy, we might expect that the solution would be in the form of a traveling wave, that
is, either

ψ = A sin(kx − wt) or ψ = A cos(kx − wt)

or some linear combination of these two functions. If one tries either of these by substitution into Eq.
20.3, one finds that neither satisfies the Schrodinger equation. The reason is that when you differentiate
a sine function twice with respect to x, you get the sine function back, but when you differentiate it
with respect to time once, you get a cosine function. For example, let us consider I/J = A sin (kx - wt).
Differentiating with respect to x, we first get

∂ψ

∂x
=
∂
∂x

[A sin (kx − ωt)] = kA cos (kx − ωt)

and the second differentiation yields

∂2ψ

∂x2 =
∂
∂x

[kA cos (kx − ωt)] = −k2A sin (kx − ωt)

The derivative of ψ with respect to t yields

∂ψ

∂t
=
∂
∂t

[A sin (kx − ωt)] = −ωA cos (kx − ωt)

Substituting these results for ∂2ψ/∂x2 and ∂ψ/∂t in Eq. 3, we obtain

k2~2

2m
A sin (kx − ωt) = −i~ω A cos (kx − ωt)


