Problem 01:

Show that for cubic lattice, the latice constant a is given by $a=\left(\frac{n M}{\rho N_{A}}\right)^{1 / 3}$, where n is number of lattice points per unit cell, M is gm molecular weight of the molecules at lattice points, ρ is the density of crystal and N_{A} is Avogadro's number.

Solution:

We have

$$
\begin{aligned}
\text { Density }(\rho) & =\frac{\text { Mass of Unit Cell }}{\text { Volume of Unit Cell }} \\
& =\frac{\text { Number of lattices per unit cell } \times \text { Mass of one molecule }}{a^{3}} \\
& =\frac{n \times \text { Mass of one molecule }}{a^{3}} \\
& =\frac{n \times \frac{M}{N_{A}}}{a^{3}} \\
& =\frac{n M}{a^{3} N_{A}} \\
\therefore a & =\left(\frac{n M}{\rho N_{A}}\right)^{1 / 3}
\end{aligned}
$$

Problem: 02

Molybdenum has the bcc crystal structure, a density of $10 \mathrm{gm} \mathrm{cm}^{-3}$, and an atomic mass of $95.94 \mathrm{gm} \mathrm{mol}^{-1}$. What is atomic concentraion, lattice parameter a and atomic radius of molybdenum?

Hint:

- Find a using Problem 01.
- For $b c c$ crystal structure, $4 r=\sqrt{3} a$. This gives r.
- atomic concentration $=$ Number of atoms in unit cell/Volume of unit cell $=6.41 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$

Problem 03:

Calculate the number of atoms per unit cell of a metal having lattice parameter of $2.9 \AA$ and density of $7.87 \mathrm{gm} / \mathrm{cc}$. Atomic weight of the metal is $55.85 \mathrm{gm} / \mathrm{mol}$ and $N_{A}=6.023 \times 10^{23} \mathrm{per} \mathrm{mol}$.

Hint:

- Same as above.

