Fermions

Let us assume that the particles occupying the state $\left|n_{0}\right\rangle$ are fermions. We are restricted by Pauli's exclusion principle that $n_{0}=0,1$.

Now, in case of fermions, we can define creation and annihilation operators such that

$$
\begin{array}{ll}
a_{0}|1\rangle=|0\rangle, & a_{0}|0\rangle=0 ; \\
a_{0}^{+}|1\rangle=0, & a_{0}^{\dagger}|0\rangle=|1\rangle . \tag{2}
\end{array}
$$

In the $|0\rangle,|1\rangle$ basis, these operators are the 2×2 matrices:

$$
\begin{aligned}
& a_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& a_{0}^{+}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

With this explicit representation, we see that they are hermitian conjugate to each other. The algebraic properties of the fermion operators are different from those of the boson operators. The commutator, in the $|0\rangle,|1\rangle$ basis, is

$$
\left[a_{0}, a_{0}^{\dagger}\right]=\left(\begin{array}{cc}
1 & 0 \tag{3}\\
0 & -1
\end{array}\right) \neq I
$$

By construction, we cannot put two fermions in the same state with these operators.
Consider the anticommutator:

$$
\begin{align*}
& \left\{a_{0}, a_{0}^{\dagger}\right\}|1\rangle=\left(a_{0} a_{0}^{\dagger}+a_{0}^{\dagger} a_{0}\right)|1\rangle=|1\rangle, \tag{4}\\
& \left\{a_{0}, a_{0}^{\dagger}\right\}|0\rangle=|0\rangle \tag{5}
\end{align*}
$$

That is, $\left\{a_{0}, a_{0}^{\dagger}\right\}=1$. Also,

$$
\begin{align*}
& \left\{a_{0}, a_{0}\right\}=0, \tag{6}\\
& \left\{a_{0}^{\dagger}, a_{0}^{\dagger}\right\}=0 . \tag{7}
\end{align*}
$$

The number of particles operator is $N_{0}=a_{0}^{\dagger} a_{0}$.
In the case of fermions, we now have four possible states: $|0,0\rangle,|1,0\rangle,|0,1\rangle$, and $|1,1\rangle$. We define:

$$
\begin{align*}
& a_{0}^{\dagger}|0,0\rangle=|1,0\rangle ; \quad a_{0}^{\dagger}|1,0\rangle=0, \tag{8}\\
& a_{0}|1,0\rangle=|0,0\rangle ; \quad a_{0}|0,0\rangle=0, \tag{9}\\
& a_{0}|0,1\rangle=0 ; \quad a_{0}^{\dagger}|1,1\rangle=0, \tag{10}\\
& a_{1}^{\dagger}|0,0\rangle=|0,1\rangle ; \quad a_{1}|0,0\rangle=a_{1}|1,0\rangle=0, \tag{11}\\
& a_{1}^{\dagger}|1,0\rangle=|1,1\rangle ; \quad a_{1}|0,1\rangle=|0,0\rangle, \tag{12}\\
& a_{1}^{\dagger}|0,1\rangle=a_{1}^{\dagger}|1,1\rangle=0 ; \quad a_{1}|1,1\rangle=|1,0\rangle . \tag{13}
\end{align*}
$$

But we must be careful in writing down the remaining actions, of a_{0}, a_{0}^{\dagger} on the states with $n_{1}=1$. These actions are constrained by consistency with the exclusion principle. We must get a sign change if we interchange the two fermions in a state. Thus, consider using the a and a^{+}operators to "interchange" the
two fermions in the $|1,1\rangle$ state: First, take the fermion away from ϕ_{1},

$$
\begin{equation*}
|1,1\rangle \rightarrow|1,0\rangle=a_{1}|1,1\rangle \tag{14}
\end{equation*}
$$

Then "move" the other fermion from ϕ_{0} to ϕ_{1},

$$
\begin{equation*}
|1,0\rangle \rightarrow|0,1\rangle=a_{1}^{\dagger} a_{0}|1,0\rangle . \tag{15}
\end{equation*}
$$

Finally, restore the other one to ϕ_{0},

$$
\begin{equation*}
|0,1\rangle \rightarrow a_{0}^{\dagger}|0,1\rangle=a_{0}^{\dagger} a_{1}^{\dagger} a_{0} a_{1}|1,1\rangle \tag{16}
\end{equation*}
$$

We require the result to be a sign change, i.e.,

$$
\begin{equation*}
a_{0}^{\dagger}|0,1\rangle=-|1,1\rangle . \tag{17}
\end{equation*}
$$

Since a_{0} is the hermitian conjugate of a_{0}^{\dagger}, we also have $a_{0}|1,1\rangle=-|0,1\rangle$.
We therefore have the anticommutation relations:

$$
\begin{equation*}
\left\{a_{0}, a_{0}^{\dagger}\right\}=\left\{a_{1}, a_{1}^{\dagger}\right\}=1 \tag{18}
\end{equation*}
$$

All other anticommutators are zero, including $\left\{a_{0}, a_{1}\right\}=\left\{a_{0}, a_{1}^{\dagger}\right\}=0$, following from the antisymmetry of fermion states under interchange.

For the fermion case, we have the generalization:

$$
\begin{align*}
\left\{a_{i}, a_{j}^{\dagger}\right\} & =\delta_{i j} \tag{19}\\
\left\{a_{i}, a_{j}\right\} & =\left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0, \tag{20}\\
\left|n_{0}, n_{1}, \ldots\right\rangle & =\cdots\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{0}^{\dagger}\right)^{n_{0}}|0\rangle . \tag{21}
\end{align*}
$$

The general relation for a state $\left|n_{0}, n_{1}, \cdots\right\rangle$ with creation and annihilation operator is given by

$$
\begin{align*}
a_{i}^{\dagger}\left|\cdots, n_{i-1}, n_{i}, n_{i+1}, \cdots\right\rangle & =(-1)^{\eta_{i}}\left|\cdots, n_{i-1}, 1, n_{i+1}, \cdots\right\rangle \text { for } n_{i}=0 \tag{22}\\
& =0 \quad \text { for } n_{i}=1 \tag{23}
\end{align*}
$$

$$
\begin{align*}
a_{i}\left|\cdots, n_{i-1}, n_{i}, n_{i+1}, \cdots\right\rangle & =(-1)^{\eta_{i}}\left|\cdots, n_{i-1}, 0, n_{i+1}, \cdots\right\rangle \text { for } n_{i}=1 \tag{24}\\
& =0 \quad \text { for } n_{i}=0 \tag{25}
\end{align*}
$$

where η_{i} is the number of occupied state to the left of state i.
Let Ψ be an occupation number wave function that contains the state i but not the state j. Let us assume $i>j$. Also η_{i} and η_{j} represent the number of occupied state immediately to the left of i and j respectively. Then,

$$
\begin{align*}
a_{j}^{\dagger} a_{i} \Psi & =(-1)^{\eta_{i}+\eta_{j}}\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle \tag{26}\\
a_{i} a_{j}^{+} \Psi & =(-1)^{\eta_{i}+\eta_{j}+1}\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle \tag{27}
\end{align*}
$$

$$
\begin{equation*}
\therefore\left[a_{j}^{\dagger} a_{i}+a_{i} a_{j}^{\dagger}\right] \Psi=(-1)^{\eta_{i}+\eta_{j}}[1-1]\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle \tag{28}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
\left[a_{j}^{\dagger}, a_{i}\right]_{+}=a_{j}^{\dagger} a_{i}+a_{i} a_{j}^{\dagger}=0 \quad \text { for } i \neq j \tag{29}
\end{equation*}
$$

It is straightforward to show that, if $i=j, a_{i}^{\dagger} a_{i}+a_{i} a_{i}^{\dagger}=1$. The general anticommutation rule is therefore,

$$
\begin{equation*}
\left[a_{i}^{\dagger}, a_{j}\right]_{+}=\delta_{i j} \tag{30}
\end{equation*}
$$

The number operator \hat{N} can therefore be defined as

$$
\begin{equation*}
\hat{N}=\sum_{i} a_{i}^{\dagger} a_{i} \tag{31}
\end{equation*}
$$

Homework-01

1. Show the following commutation relation of annihilation and creation operator for bosons.

$$
\left.\begin{array}{ll}
{\left[\begin{array}{lll}
a_{0} & \left.a_{1}\right]=0 & {\left[a_{0}^{\dagger}\right.}
\end{array} a_{1}\right]=0} \\
{\left[a_{0}\right.} & \left.a_{1}^{\dagger}\right]=0
\end{array}\right]\left[\begin{array}{lll}
a_{0}^{\dagger} & \left.a_{1}^{\dagger}\right]=0
\end{array}\right.
$$

2. Show that $\hat{N}\left|n_{0}, n_{1}\right\rangle=\left(n_{0}+n_{1}\right)\left|n_{0}, n_{1}\right\rangle$ from the definition of a_{0} and a_{1} for bosons.
3. Show that 2×2 matrix $a_{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $a_{0}^{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on the basis of $|0\rangle,|1\rangle$
4. Show that $\left[a_{0}, a_{0}^{\dagger}\right]=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \neq I$

Homework-02

1. Show that $\left[a_{0} a_{0}^{\dagger}\right]=\left[\begin{array}{ll}a_{1} & a_{1}^{\dagger}\end{array}\right]=1$ and $\left[a_{0} a_{1}\right]=\left[\begin{array}{ll}a_{1} & a_{1}^{\dagger}\end{array}\right]=0$
2. Verify: $\left|n_{0}, n_{1}, \ldots ..\right\rangle=\left(a_{1}^{+}\right)^{n_{1}}\left(a_{0}^{\dagger}\right)^{n_{0}}|0\rangle$ for five single particle state.
3. Show the following relations:

$$
\begin{aligned}
a_{j}^{\dagger} a_{i} \Psi & =(-1)^{\eta_{i}+\eta_{j}}\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle \\
a_{i} a_{j}^{\dagger} \Psi & =(-1)^{\eta_{i}+\eta_{j}+1}\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle \\
{\left[a_{j}^{\dagger} a_{i}+a_{i} a_{j}^{\dagger}\right] \Psi } & =(-1)^{\eta_{i}+\eta_{j}}[1-1]\left|\cdots, n_{j-1}, 1, \cdots, n_{i-1}, 0, \cdots\right\rangle
\end{aligned}
$$

where η_{i} and η_{j} are number of occupied state.
4. Show that

$$
\hat{N}=\sum_{i} a_{i}^{\dagger} a_{i}
$$

is a number operator in fermions.

