Fermion Operator

Consider two single-particle states ϕ_{1} and ϕ_{2}. The normalized wave function that is antisymmetric with respect to particle interchange is

$$
\begin{equation*}
\left\langle r_{1}, r_{2} \mid n_{1}, n_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\phi_{1}(1) \phi_{2}(2)-\phi_{1}(2) \phi_{2}(1)\right] \tag{1}
\end{equation*}
$$

This state can be constructed from the determinant of ϕ_{1} and ϕ_{2} :

$$
D_{2}=\frac{1}{\sqrt{2!}} \left\lvert\,\left(\begin{array}{ll}
\phi_{1}(1) & \phi_{2}(1) \tag{2}\\
\phi_{1}(2) & \phi_{2}(2)
\end{array}\right)\right.
$$

The general rule for constructing an antisymmetric wave function out of n single-particle states is

$$
\begin{equation*}
D_{n}=\left\langle r_{1}, r_{2}, \cdots \mid n_{\alpha}, n_{\beta}, \cdots\right\rangle=\frac{1}{\sqrt{n!}}\left\|\phi_{1} \cdots \phi_{n}\right\| \tag{3}
\end{equation*}
$$

where || || represents the determinant. D_{n} contains all antisymmetrized permutations of the orbital set $\phi_{1} \cdots \phi_{n}$ and hence may be written as

$$
\begin{equation*}
D_{n}=\left\langle r_{1}, r_{2}, \cdots \mid n_{\alpha}, n_{\beta}, \cdots\right\rangle=\frac{1}{\sqrt{n!}} \sum_{P}(-1)^{P} P\left[\phi_{1} \cdots \phi_{n}\right] \tag{4}
\end{equation*}
$$

with P as the permutation operator. A general many-particle fermionic state can be written as

$$
\begin{equation*}
\left|n_{1}, n_{2}, \cdots\right\rangle=a_{1}^{\dagger} a_{2}^{\dagger} \cdots|0\rangle \tag{5}
\end{equation*}
$$

Complete antisymmetry under particle interchange is built into this many-body state as a result of the anticommuting property of the fermion operators. Note that there is no $\sqrt{n!}$ normalization factor. In first quantization, however, an explicit $\sqrt{n!}$ factor appears, because particle are placed in particular singleparticle state and all possible permutations are summed over. In second quantization, no labels are attached to the particles.

Consider the one body operator \hat{H}_{1}. In second quantized form, a general one-body operator is restricted to have a single creation-annihilation operator pairs. In general, we can write a one-body operator as

$$
\begin{equation*}
\hat{H}_{1}=\sum_{v, \lambda} c_{\lambda v} a_{\lambda}^{\dagger} a_{v} \tag{6}
\end{equation*}
$$

To determine the coefficient $c_{\lambda \nu}$, we simply evaluate the matrix element $\langle\mu| \hat{H}_{1}|\gamma\rangle$.
Orthogonality of the single-particle state implies that $\langle\mu| \hat{H}_{1}|\gamma\rangle=c_{\mu \gamma}$
Therefore the most general way of writing a one-body operator in second quantization is,

$$
\begin{equation*}
\hat{H}_{1}=\sum_{v, \lambda}\langle\lambda| \hat{H}_{1}|v\rangle a_{\lambda}^{\dagger} a_{v} \tag{7}
\end{equation*}
$$

In the event that the single-particle state are eigenfunctions of \hat{H}_{1}, then $\hat{H}_{1}|v\rangle=\epsilon_{v}|v\rangle$. Then equation (7) becomes

$$
\begin{equation*}
\hat{H}_{1}=\sum_{\lambda} \epsilon_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}=\sum_{\lambda} n_{\lambda} \epsilon_{\lambda} \tag{8}
\end{equation*}
$$

In the case that the \hat{H}_{1} is a one-body energy operator, the average of $H \hat{(1)}$ determines the average energy of the system.

Consider now a general 2-body operator

$$
\begin{equation*}
\hat{H}_{2}=\frac{1}{2} \sum_{i, j} \hat{V}(i, j) \tag{9}
\end{equation*}
$$

In the electron gas, $\hat{V}(i, j)=e^{2} /\left|\hat{r}_{i}-\hat{r}_{j}\right|$, the Coulomb energy. A two-body operator can at most create two particle-hole excitations in a general many-body state. The general form of the operator that creates such excitations is $a_{k}^{\dagger} a_{l}^{\dagger} a_{j} a_{i}$. As a consequence, a general 2-body operator in second-quantized form can be written as

$$
\begin{equation*}
\hat{H}_{2}=\frac{1}{2} \sum_{i, j, k, l} V_{i, j, k, l} a_{k}^{\dagger} a_{l}^{\dagger} a_{j} a_{i} \tag{10}
\end{equation*}
$$

The interacting electron Hamiltonian containing both one- and two- body terms can be recast as

$$
\begin{equation*}
\hat{H}_{e}=\sum_{v, \lambda}\langle v| \hat{H}_{1}|\lambda\rangle a_{v}^{\dagger} a_{\lambda}+\frac{1}{2} \sum_{i, j, k, l}\langle k l| \frac{e^{2}}{r_{1}-r_{2}}|i j\rangle a_{k}^{\dagger} a_{l}^{\dagger} a_{j} a_{i} \tag{11}
\end{equation*}
$$

To make contact with the electron gas, it is customary to transform to momentum space, in which the single-particle plane-wave states,

$$
\begin{equation*}
\phi_{p}(r)=\frac{e^{i p \cdot r / \hbar}}{\sqrt{V}} \tag{12}
\end{equation*}
$$

diagonalize exactly the electron kinetic energy. These states are defined in a box of volume V with periodic boundary conditions imposed. Particles with spin σ are added or removed from these states by the operators $a_{p \sigma}^{+}$or $a_{p \sigma}$, respectively. We introduce the field operator

$$
\begin{equation*}
\Psi_{\sigma}^{\dagger}(r)=\sum_{p} \frac{e^{-i p \cdot r / \hbar}}{\sqrt{V}} a_{p_{\sigma}}^{\dagger} \tag{13}
\end{equation*}
$$

which creates an electron at r with spin σ. The Hermitian conjugate field, $\Psi_{\sigma}(r)$, annihilates a particle with spin σ at r. Field operators create and annihilate particles at particular positions. In so doing, they do not add or remove particles from a particular momentum states with amplitude $e^{ \pm p \cdot r / \hbar} / \sqrt{V}$. The product of the creation and annihilation field operators

$$
\begin{equation*}
\Psi_{\sigma}^{\dagger}(r) \Psi_{\sigma}(r)=\frac{1}{V} \sum_{p, p^{\prime}} e^{-i r \cdot\left(p-p^{\prime}\right) / \hbar} a_{p_{\sigma}}^{+} a_{p_{\sigma}^{\prime}} \tag{14}
\end{equation*}
$$

defines the particle density operator. Consequently if we integrate equation (14) over r,

$$
\begin{aligned}
\hat{n}_{\sigma} & =\int \Psi_{\sigma}^{\dagger}(r) \Psi_{\sigma}(r) d r \\
& =\frac{1}{V} \int \sum_{p, p^{\prime}} e^{-i r \cdot\left(p-p^{\prime}\right) / \hbar} a_{p_{\sigma}}^{+} a_{p_{\sigma}^{\prime}} d r \\
& =\sum_{p} a_{p_{\sigma}}^{\dagger} a_{p_{\sigma}} \\
& =\sum_{p} \hat{n}_{p \sigma}
\end{aligned}
$$

we obtain the total particle density for the electron with spin σ.
We can construct a general many-body state $\left|r_{1 \sigma_{1}} \cdots r_{n \sigma_{n}}\right\rangle$,

$$
\begin{equation*}
\left|r_{1 \sigma_{1}} \cdots r_{n \sigma_{n}}\right\rangle=\frac{1}{\sqrt{n!}} \Psi_{\sigma_{1}}^{+}\left(r_{1}\right) \cdots \Psi_{\sigma_{n}}^{\dagger}\left(r_{n}\right)|0\rangle \tag{15}
\end{equation*}
$$

from vacuum state, using the field operator $\Psi_{\sigma_{l}}^{+}\left(r_{i}\right)$. The rules applying $\Psi_{\sigma_{l}}^{+}$and $\Psi_{\sigma_{l}}$ to $\left|r_{1 \sigma_{1}} \cdots r_{n \sigma_{n}}\right\rangle$ are

$$
\begin{equation*}
\Psi_{\sigma_{n+1}}^{\dagger}\left(r_{n+1}\right)\left|r_{1 \sigma_{1}} \cdots r_{n \sigma_{n}}\right\rangle=\sqrt{n+1}(-1)^{\eta_{n+1}}\left|r_{1 \sigma_{1}} \cdots r_{n+1 \sigma_{n+1}}\right\rangle \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{\sigma}(r)\left|r_{1 \sigma_{1}} \cdots r_{n \sigma_{n}}\right\rangle=\frac{1}{\sqrt{n}} \sum_{\alpha} \delta\left(r-r_{\alpha}\right)(-1)^{\eta_{\alpha}}\left|r_{1} \cdots r_{\alpha-1}, r_{\alpha+1} \cdots r_{n}\right\rangle \tag{17}
\end{equation*}
$$

Here, η_{α} is the number of occupied states to the left of r_{α}.

Homework-03

1. All problems in Philip Philips Book, corresponding chapter.
