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Fermion Operator
Consider two single-particle states φ1 and φ2. The normalized wave function that is antisymmetric

with respect to particle interchange is

〈r1, r2| n1,n2〉 =
1
√

2

[
φ1(1)φ2(2) − φ1(2)φ2(1)

]
(1)

This state can be constructed from the determinant of φ1 and φ2:

D2 =
1
√

2!

∣∣∣∣∣∣
(
φ1(1) φ2(1)
φ1(2) φ2(2)

)∣∣∣∣∣∣ (2)

The general rule for constructing an antisymmetric wave function out of n single-particle states is

Dn =
〈
r1, r2, · · ·

∣∣∣ nα,nβ, · · ·
〉

=
1
√

n!

∣∣∣∣∣∣φ1 · · ·φn

∣∣∣∣∣∣ (3)

where || || represents the determinant. Dn contains all antisymmetrized permutations of the orbital set
φ1 · · ·φn and hence may be written as

Dn =
〈
r1, r2, · · ·

∣∣∣ nα,nβ, · · ·
〉

=
1
√

n!

∑
P

(−1)PP
[
φ1 · · ·φn

]
(4)

with P as the permutation operator. A general many-particle fermionic state can be written as

|n1,n2, · · · 〉 = a†1a†2 · · · |0〉 (5)

Complete antisymmetry under particle interchange is built into this many-body state as a result of the
anticommuting property of the fermion operators. Note that there is no

√
n! normalization factor. In first

quantization, however, an explicit
√

n! factor appears, because particle are placed in particular single-
particle state and all possible permutations are summed over. In second quantization, no labels are
attached to the particles.

Consider the one body operator Ĥ1. In second quantized form, a general one-body operator is re-
stricted to have a single creation-annihilation operator pairs. In general, we can write a one-body oper-
ator as

Ĥ1 =
∑
ν,λ

cλνa†λaν (6)

To determine the coefficient cλν, we simply evaluate the matrix element
〈
µ
∣∣∣ Ĥ1

∣∣∣γ〉.
Orthogonality of the single-particle state implies that

〈
µ
∣∣∣ Ĥ1

∣∣∣γ〉 = cµγ
Therefore the most general way of writing a one-body operator in second quantization is,

Ĥ1 =
∑
ν,λ

〈λ| Ĥ1 |ν〉 a†λaν (7)

In the event that the single-particle state are eigenfunctions of Ĥ1, then Ĥ1 |ν〉 = εν |ν〉. Then equation
(7) becomes

Ĥ1 =
∑
λ

ελa†λaλ =
∑
λ

nλελ (8)

In the case that the Ĥ1 is a one-body energy operator, the average of ˆH(1) determines the average
energy of the system.

Consider now a general 2-body operator
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Ĥ2 =
1
2

∑
i, j

V̂(i, j) (9)

In the electron gas, V̂(i, j) = e2/|r̂i − r̂ j|, the Coulomb energy. A two-body operator can at most create
two particle-hole excitations in a general many-body state. The general form of the operator that creates
such excitations is a†ka†l a jai. As a consequence, a general 2-body operator in second-quantized form can
be written as

Ĥ2 =
1
2

∑
i, j,k,l

Vi, j,k,l a†ka†l a jai (10)

The interacting electron Hamiltonian containing both one- and two- body terms can be recast as

Ĥe =
∑
ν,λ

〈ν| Ĥ1 |λ〉 a†νaλ +
1
2

∑
i, j,k,l

〈k l|
e2

r1 − r2

∣∣∣i j
〉

a†ka†l a jai (11)

To make contact with the electron gas, it is customary to transform to momentum space, in which the

single-particle plane-wave states,

φp(r) =
ei p·r/~

√
V

(12)

diagonalize exactly the electron kinetic energy. These states are defined in a box of volume V with

periodic boundary conditions imposed. Particles with spin σ are added or removed from these states by
the operators a†pσ or apσ, respectively. We introduce the field operator

Ψ†σ(r) =
∑

p

e−i p·r/~

√
V

a†pσ (13)

which creates an electron at r with spin σ. The Hermitian conjugate field, Ψσ(r) , annihilates a particle
with spin σ at r. Field operators create and annihilate particles at particular positions. In so doing, they
do not add or remove particles from a particular momentum states with amplitude e±p·r/~/

√
V. The

product of the creation and annihilation field operators

Ψ†σ(r)Ψσ(r) =
1
V

∑
p,p′

e−ir·(p−p′)/~ a†pσap′σ (14)
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defines the particle density operator. Consequently if we integrate equation (14) over r,

n̂σ =

∫
Ψ†σ(r)Ψσ(r)dr

=
1
V

∫ ∑
p,p′

e−ir·(p−p′)/~ a†pσap′σdr

=
∑

p

a†pσapσ

=
∑

p

n̂pσ

we obtain the total particle density for the electron with spin σ.
We can construct a general many-body state

∣∣∣r1σ1 · · · rnσn

〉
,

∣∣∣r1σ1 · · · rnσn

〉
=

1
√

n!
Ψ†σ1

(r1) · · ·Ψ†σn
(rn) |0〉 (15)

from vacuum state, using the field operator Ψ†σl
(ri). The rules applying Ψ†σl

and Ψσl to
∣∣∣r1σ1 · · · rnσn

〉
are

Ψ†σn+1
(rn+1)

∣∣∣r1σ1 · · · rnσn

〉
=
√

n + 1 (−1)ηn+1
∣∣∣r1σ1 · · · rn+1σn+1

〉
(16)

and

Ψσ(r)
∣∣∣r1σ1 · · · rnσn

〉
=

1
√

n

∑
α

δ(r − rα)(−1)ηα |r1 · · · rα−1, rα+1 · · · rn〉 (17)

Here, ηα is the number of occupied states to the left of rα.

Homework-03
1. All problems in Philip Philips Book, corresponding chapter.


