PHY611: Advanced Solid State Physics I

Nature of the course: Theory

Full Marks: 50

2 CH (L30+T10)

Pass Marks: 25

Course Description:

This course aims at providing students with basic knowledge and skill in theoretical as well as experimental aspects of Solid State Physics.

Objectives:

- To acquaint student with the theoretical and experimental methods in Solid State Physics.
- To prepare them in developing skill to pursue further study and research in the field of physics.

Course Content:

1.	Intro 1.1	duction: Non-interacting Electron Gas	[2 hours]
2.	Born 2.1 2.2 2.3	-Oppenhemier Approximation: Basic Hamiltonian Adiabatic Approximation Reduced electron problem	[3 hours]
3.	Seco 3.1 3.2 3.3	nd Quantization: Bosons Fermions Fermion operators	[5 hours]
4.	Hartr 4.1 4.2 4.3	ee-Fock Approximation: Noninteracting limit Hartree-Fock Approximation Diagrams	[4 hours]
5.	Intera 5.1 5.2 5.3	acting electron gas: Uniform electron gas Hartree-Fock excitation spectrum Cohesive energy of metals	[4 hours]
6.	Loca 6.1 6.2	I magnetic moments in metals: Local moments: Phenomenology Mean-field solution	[4 hours]
7.	Quer 7.1 7.2 7.3 7.4 7.5 7.6	The kondo problems Kondo Hamiltonian why is J negative? Scattering and resistivity minimum Electron-impurity scattering amplitutde Kondo temperature	[8 hours]

7.7 Poor man's scaling

Text Book:

Philip Phillips – Advanced Solid State Physics, Cambridge university Press, 2nd ed., Cambridge (2012)

Reference Books:

- 1. Taylor Philip & Heinonen Olle **Quantum approach to condensed matter physics**, Cambridge university Press, (2002).
- 2. Altland Alexander and Simons Ben **Condensed matter field theory**, Cambridge university Press, south asian ed. (2008).
- 3. Wen Xiao-Gang **Quantum field theory of many-body systems**, Oxford university Press, New York (2004).
- 4. Mahan Gerald Many-particle Physics, 3rd edition, Springer (India), Pvt. Ltd., New Delhi (2008).