3
DENSITY-FUNCTIONAL THEORY

3.1 The original idea: the Thomas—Fermi model

We are now ready to begin to expound the density-functional theory of
electronic structure, the principal subject of this book. This is a
remarkable theory that allows one to replace the complicated N-electron
wave function W (x;,X;,...,Xy) and the associated Schrodinger equa-
tion by the much simpler electron density p(r) and its associated
calculational scheme. Remarkable indeed!

There is a long history of such theories, which until 1964 only had
status as models. The history begins with the works of Thomas and Fermi
in the 1920s (Thomas 1927; Fermi 1927, 1928a, 1928b; March 1975).
What these authors realized was that statistical considerations can be
used to approximate the distribution of electrons in an atom. The
assumptions stated by Thomas (1927) are that: “Electrons are distributed
uniformly ip the six-dimensional phase space for the motion of an
electron at the rate of two for each k> of volume,” and that there is an
effective potential field that “is itself determined by the nuclear charge
and this distribution of electrons.” The Thomas-Fermi formula for
electron density can be derived from these assumptions. We here give a
slightly different, but equivalent, derivation of the Thomas—-Fermi
theory; see Chapter 6 for additional viewpoints.

We divide the space into many small cubes (cells), each of side [ and
volume AV =/?, each containing some fixed number of electrons AN
(which may have different values for different cells), and we assume that
the electrons in each cell behave like independent fermions at the
temperature 0 K, with the cells independent of one another.

The energy levels of a particle in a three-dimensional infinite well are

given by the formula
2
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where n,,n,n,=1,2,3,..., and the second equality defines the

quantity R. For high quantum numbers, that is, for large R, the number
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of distinct energy levels with energy smaller than & can be approximated
by the volume of one octant of a sphere with radius R in the space
(e, ny, n;). This number is

1/47R* 7 /8ml*e\**?
o0)=5(*5 ) =55 ) (3.12)
The number of energy levels between € and ¢ + é¢ is accordingly
g(e) Ae = ®(e + 8¢) — P(¢)
2\ 312
= g (8—:’21—) g2 8¢ + O((5¢)?) (3.1.3)

where the function g(¢) is the density of states at energy e.

To compute the total energy for the cell with AN electrons, we need
the probability for the state with energy &, to be occupied, which we call
f(¢). This is the Fermi—Dirac distribution,

1

f&) =1 me=m (3.1.4)
which at 0 K reduces to a step function:
1, e < Er

f(e)-—{o’ e>e, as fo o (3.1.5)

where &g is the so-called Fermi energy. All the states with energy smaller
than & are occupied and those with energy greater than &p are
unoccupied. The Fermi energy &r is the zero-temperature limit of the
chemical potential u.

Now we find the total energy of the electrons in this cell by summing
the contributions from the different energy states:

AE = ZJ ef (e)g(e) de

3/2 Er
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h 0

8 (2m\*? |
2?(F) 138;/2 (3.1.6)
where the factor 2 enters because each energy level is doubly occupied,

by one electron with spin « and another with spin 8. The Fermi energy ¢
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is related to the number of electrons AN in the cell, through the formula

AN =2 ff(s)g(s) de

8 2 32
’ = (71'32’-) P (3.1.7)

Eliminating & from (3.1.6) by (3.1.7), we obtain

3

AE = 5 AN &g
3h2 ( 3 2/3 AN 5/3
=—|— 13(—) 3.1.

10m SJt) I (3.1.8)

This derivation can be found, for example, in McQuarrie (1976, pp.

164-166).

Equation (3.1.8) is a relation between total kinetic energy and the
electron density p = AN/I>= AN/AV for each cell in the space. (Note
that different cells can have different values of p.) Adding the contribu-
tions from all cells, we find the total kinetic energy to be, now reverting
to atomic units,

Trelp] = CFJ’ PP dr, Cp=3(37x%)*"*=2871 (3.1.9)

where the limit AV —0, with p = AN/AV = p(r) finite, has been taken
to give an integration instead of a summation. This is the famous
Thomas—Fermi kinetic energy functional, which Thomas and Fermi
dared to apply to electrons in atoms, in the manner we are about to
describe. [We here first encounter one of the most important ideas in
modern density-functional theory, the /local density approximation
(LDA). In this approximation, electronic properties are determined as
functionals of the electron density by applying locally relations appropri-
ate for a homogeneous electronic system. In later chapters the LDA is
employed for properties other than the kinetic energy.]

What (3.1.9) accomplishes is approximation of the electronic kinetic
energy in terms. of the density p(r), whereas the rigorous energy
formula of (2.4.9) gives the kinetic energy in terms of the first-order
density matrix. If we further neglect the exchange and correlation terms
in (2.4.9), thus only taking into consideration the classical electrostatic
energies of electron—nucleus attraction and electron—electron repulsion,
we get, using (2.4.10), an energy formula for an atom in terms of electron
density alone:

Etilp(®)]= ijps’?’(r) dr—ZjBE—QdH-%j P—I(;r—l)’;frl—zzdn dr,
17 12

(3.1.10)
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This is the energy functional of the Thomas—Fermi theory of atoms. For
molecules, the second term is modified appropriately.

We now assume that for the ground state of an atom of interest the
electron density minimizes the energy functional Erg[p(r)], under the
constraint

N=N[p()]= f p(t)dr (3.1.11)

where N is the total number of clectrons in the atom. One may
incorporate this constraint by the method of Lagrange multipliers (see
Appendix A). The ground-state electron density must satisfy the varia-
tional principle

5{ETF[p] - Hw(f p(x) dr — N)} =0 (3.1.12)
which yields the Euler—Lagrange equation
_ 6ETF[p] -5 2/3

where ¢(r) is the electrostatic potential at point r due to the nucleus and
the entire electron distribution:

¢(r) =%— £~(—r3~)-dr2 (3.1.14)

r — x5
Equation (3.1.13) can be solved in conjunction with the constraint
(3.1.11), and the resulting electron density then inserted in (3.1.10) to
give the total energy. This is the Thomas—Fermi theory of the atom, an
exquisitely simple model.

Countless modifications and improvements of the Thomas—Fermi
theory have been made over the years. Some of them will be discussed in
Chapter 6, where the underlying approximations will also be examined in
some detail. Unfortunately, the primitive method just described founders
when one comes to molecules. As will be shown in Chapter 6, no
molecular binding whatever is predicted in the method (Teller 1962).
This, plus the fact that the accuracy for atoms is not high as that with
other methods, caused the method to come to be viewed as an
oversimplified model of not much real importance for quantitative
predictions in atomic or molecular or solid-state physics.

However, the situation changed with the publication of the landmark
paper by Hohenberg and Kohn (1964). They provided the fundamental
theorems showing that for ground states the Thomas—Fermi model may
be regarded as an approximation to an exact theory, the density-
functional theory. There exists an exact energy functional E[p], and there
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exists also an exact variational principle of the form of (3.1-12). This
exact theory will now be described, first in its original form, then in more
mature versions.

3.2 The Hohenberg-Kohn theorems

Recall that for an electronic system described by the Hamiltonian (1.1.2),
both the ground-state energy and the ground-state wave function are
determined by the minimization of the energy functional E[W¥] of (1.2.1)
and (1.2.3). But for an N-electron system, the external potential v(r)
completely fixes the Hamiltonian; thus N and v(r) determine all
properties for the ground state. (Only nondegenerate ground states are
considered in this section; degeneracy presents no difficulty, as will be
discussed in §3.4.) This of course is not surprising since v(r) defines the
whole nuclear frame for a molecule, which together with the number of
electrons determines all the electronic properties.

In place of N and v(r), the first Hohenberg—Kohn theorem (Hohen-
berg and Kohn 1964) legitimizes the use of electron density p(r) as basic
variable. It states: The external potential v(x) is determined, within a
trivial additive constant, by the electron density p(r). Since p determines
the number of electrons, it follows that p(r) also determines the
ground-state wave function ¥ and all other electronic properties of the
system. Note that v(r) is not restricted to Coulomb potentials.

The proof of this theorem of Hohenberg and Kohn is disarmingly
simple. All that is employed is the minimum-energy principle for the
ground state. Consider the electron density p(r) for the nondegenerate
ground state of some N-electron system. It determines N by simple
quadrature [(1.5.2)]. It also determines v(r), and hence all properties.
For if there were two external potentials v and v’ differing by more than
a constant, each giving the same p for its ground state, we would have
two Hamiltonians H and H' whose ground-state densities were the same
although the normalized wave functions ¥ and ¥' would be different.
Taking W' as a trial function for the H problem, we would then have,
using (1.2.3),

Eo< (W[ A [9") = (W| ' 9" + (W] A — A" [
=Eq+ J p([v()—v'(x)]dr - (3.2.1)

where E, and E;, are the ground-state energies for H and H', respecively.
Similarly, taking ¥ as a trial function for the H' problem,

Ey< (W) B (W) = (W] H W) + (W] 7' — W)
~ Eo—~ [ p(0)[v() = v'(e)] dr. (3.2.2)
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Adding (3.2.1) and (3.2.2), we would obtain Ey+ Ey<Eyj+E, a
contradiction, and so there cannot be two different v that give the same p
for their ground states.

Thus, p determines N and v and hence all properties of the ground
state, for example the kinetic energy T[p], the potential energy V|[p],
and the total energy E[p]. In place of (3.1.10) we have, writing E, for E
to make explicit the dependence on v,

E,[p]=T[p] + V..[p] + V..[p]

~ [ p(eyo(@) dr + Fuclp] (32.3)
where
Falp]=Tlp] + Velp] (3.2.4)
We may write ’
V..lp] = J[p] + nonclassical term (3.2.5)

where J[p] is the classical repulsion of (2.4.10). The nonclassical term is a
very elusive, very important quantity; it is the major part of the
“exchange-correlation energy” defined and discussed at length in Chap-
ters 7 and 8 below.

The second Hohenberg—Kohn theorem (Hohenberg and Kohn 1964)
provides the energy variational principle. It reads: For a trial density p(r),
such that p(r)=0 and [ p(r) dr=N,

Ey<E,[p] (3.2.6)

where E,[p] is the energy functional of (3.2.3). This is analogous to the
variational principle for wave functions, (1.2.3). It provides the justifica-
tion for the variational principle in Thomas—Fermi theory in that Eqg[p]
is an approximation to E[p]. To prove this theorem, note that the
previous theorem assures that p determines its own ¥, Hamiltonian H,
and wave W, which can be taken as a trial function for the problem of
interest having external potential v. Thus,

(B 8 |9) = [ peo(e) dr+ Fudpl = BIPI=Elp] (.27

Assuming differentiability of E,[p], the variational principle (3.2.6)
requires that the ground-state density satisfy the stationary principle

6{E,,[p]—,uU p(r) dr——N]}=0 (3.2.8)

which gives the Euler-Lagrange equation
pu=—"—=vE@)+——— 3.2.9
5o " o0 (3.29)
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The quantity u is the chemical potential; it is discussed in detail in
Chapters 4 and 5.

If we knew the exact Fyg[p], (3.2.8) would be an exact equation for
the ground-state electron density. Note that Fyk[p] of (3.2.4) is defined
-independently of the external potential v(r); this means that Fyk[p] is a
universal functional of p(r). Once we have an explicit form (approximate
or accurate) for Fyg[p], we can apply this method to any system.
Equation (3.2.9) is the basic working equation of density-functional
theory.

Accurate calculational implementations of the density-functional
~ theory are far from easy to achieve, because of the unfortunate (but
challenging) fact that the functional Fyk[p] is hard to come by in explicit
form. We will say a great deal more about these matters in subsequent
chapters. Suffice it here to emphasize that the very existence of the exact
theory provides impetus both to work to advance the calculational
procedures to higher and higher accuracy and also to strive to develop
the conceptual consequences. In this reformulation of wave mechanics,
the electron density, and only the electron density, plays the key role,
and that emphatically bodes well for simple descriptive consequences.

Various mathematical questions can be put to the derivation just given
of density-functional theory; the theory stands up very well. We go into
these questions in some detail in the next section. In later sections, we
develop the whole theory, and its extensions to variable N and finite
temperature, from scratch, by methods that are more transparent and
more helpful for subsequent development.

3.3 The v- and N-representability of an electron density

It is extraordinary that, as shown in the previous section, the ground-
state electron density uniquely determines the properties of a ground
state, particularly the ground-state energy. We now discuss some subtle
aspects of this relationship.

Noting the close association of electron density with ground state in the
Hohenberg—Kohn theorems, we define a density to be v-representable if
it is the density associated with the antisymmetric ground-state wave
function of a Hamiltonian of the form (1.1.2) with some external
potential v(r) (not necessarily a Coulomb potential). A given density may
or may not be v-representable. We then can restate the first Hohenberg—
Kohn theorem as the fact that there is a one-to-one mapping between
ground-state wave functions and v-representable electron densities. It is
through this unique mapping that a v-representable density determines
the properties of its associated ground state. Thus, when we say that all
ground-state properties are functionals of the electron density, we need



