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1 Plasma Oscillation

We have developed a theory for the screening effects in an electron gas that assumes slow motion of
the electrons. In general this is not true, especially at large-wave vector comparable to the inverse
interparticle spacing. In this limit, collective excitations of the electron gas become accessible.
Such collective excitations are termed plasmons.

The existence of plasma excitations can be established straight-forwardly from the equations of
motion for the electron density in momentum space.To proceed, we recall the form of the Coulomb
interaction
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in momentum space, which implies that we can rewrite the Hamiltonian for our electron gas as
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with nk =
∑

i eik·ri , N the number of electrons, and Vk = 4πe2/k2. As we chose our box to be of
unit volume, nk appears without the V−1 normalization.

To determine the collective excitations, we need the time evolution of nk,
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The second derivative is
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We separate the k = q interaction term, which can be written as,
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That ωp represents the frequency of the collective oscillations of the electron gas can be seen by
writing n̈k in the suggestive form
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We see, then, that the density nk oscillates at the frequency ωp, the plasma frequency, if the terms
on the right-hand side of Eq. (6) are small. The first term is of order k2v2

Fnk. In the next term, a
product of nq’s appears. Because the density is a sum of exponential terms with randomly varying
phases, one might except that the contribution from the second term is minimal. The approximation
that ignores this contribution is known as the random-phase approximation. A well-defined plasma
frequency exists at this level of theory if

ω2
p � k2v2

F (7)

For a density of ne ∼ 1023 e−/cm3,ωp ∼ 1016s−1, or, equivalently, the energy in a plasma oscillation
is

~ωp ∼ 12eV (8)

Such a high-energy excitation cannot be created by thermal or phonon-like oscillations of the ions.
They also cannot be excited by a single electron. Plasma oscillations or plasmons arise from a
collective motion of all the electrons in a solid. As such, plasmons are long-wavelength oscilla-
tions.We estimate the maximum wave vector for which plasmons exist by considering the ratio
ωp/κT F . Recall that κ2

T F = 4me2 pF/π~
3. As a cosequence,
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We find that ωp ∝ vFκT F . Comparison with Eq.(7) reveals that well-defined plasma oscillations
exist if κT F � k. For k ≤ κT F , the electrons act individually. Note also that ω2

p ∼ 1/m. For an in-
teracting system, we replace m by the effective mass, m∗. In an insulator, m∗ → ∞. Hence, ωp ∼ 0
in an insulator. Similarly, in a conductor m∗ is finite and, as a consequence, ωp , 0. Consequently,
the magnitude of ωp is a sensitive test for the insulator-metal transition in an interacting electron
system.

A final observation on plasmons is that their dispersion relationship is fundamentally tied to the
dimensionality of space. If the electrons are confined to a plane (d = 2) but the electric field
lines are allowed to live in three-dimensional space, thereby making the Coulomb interaction the
standard 1

r potential (see Problem 8.3, Philip Philips), there is no gap to excite plasmon excitations.
In addition (see Problem 8.1, Philip Philips), the screening length is independent of density in 2d,
at least at the level of Thomas-Fermi. Both of these effects illustrate how fundamentally different a
2d electron gas is from its 3d counterpart.

1.1 Dispersion of Light

An application in which the plasma frequency naturally appears is the propagation of transverse
electromagnetic radiation in metals. Consider the Maxwell equation for the magnetic induction in
the presence of a current density,

∇ × B −
1
c
∂E
∂t

=
4πej

c
(10)

The time derivative of this equation is
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But ∂B/∂ct = −∇ × E and ∂j/∂t = eneE/m. For a transverse E-field, ∇.E = 0. As a consequence,

−∇ × (∇ × E) = −∇(∇.E) + ∇2E = ∇2E. (12)

The time derivative can now be written as(
−
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p

)
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The resultant dispersion relationship for light in a metal,
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ω2 = c2k2 + ω2
p (14)

illustrates clearly that transverse electromagnetic radiation cannot penetrate a metal for frequencies
less than the plasma frequency.
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