
Screeing and Plasmons (Lec-03) PHY661(2076)

1 Linear Response Theory

We now focus on formulating the screening problem in terms of the dielectric-response function.
To faciliate this derivation, we first introduce the general formalism of treating slowly varying time-
dependent perturbations,namely, linear-response theory. Ultimately, we will apply this approach
to calculate the density response of a homogeneous system perturbed by the electric field of an
external charge.
Consider a Hamiltonian of the form H = H0 + W(t). In the presence of the perturbation, W(t), the
average value of any observable, Y, will accquire a nontrivial time-dependence through the time
evolution of the density matrix. The average value of any dynamical observable, Y, at any time t is
determined by

〈
Y(t)

〉
= Tr

[
ρ(t)Y

]
, (1)

where ρ(t) is the density matrix appropriately normalized, so that Trρ = 1. The time evolution of
the density matrix

ρ̇ = −
i
~

[
H, ρ

]
= −

i
~

[
H0, ρ

]
+

[
W(t), ρ

] (2)

is governed by the Liouville equation of motion. To solve this equation, it is easier to work in the
interaction representation. For any operator O, we define Ô to be the interaction representation,

Ô(t) = S −1OS (3)

of O, where S = e−
iHot
~ . To simplify notation, we have departed from the convention of using Ô to

denote an operator,because Ô now indicates an operator in the interaction representation. Rewrit-
ing the original average of Y and the Liouville equation in the interaction representation, we obtain,

〈
Ŷ(t)

〉
= Tr

[̂
ρ(t)Ŷ(t)

]
(4)

and

i~ ˙̂ρ = −H0ρ̂ + S −1i~
∂ρ

∂t
S + S −1ρH0S

= −
[
H0ρ̂

]
+ S −1

[
H0 + W(t), ρ

]
S

=
[
Ŵ(t), ρ̂(t)

]
.

(5)

Let ρ0 be the density matrix before the perturbation is turned on. For a perturbation turned on at
t = −∞,the solution to the Liouville equation is the time-ordered product
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ρ̂(t) = Texp
( 1
i~

∫ t

−∞

[
Ŵ(t′), ρ̂

]
dt′

)
= ρ0 −

i
~

∫ t

−∞

[
Ŵ(t1), ρ0

]
dt1 −

1
~2

∫ t

−∞

dt1

∫ t1

−∞

dt2
[
Ŵ(t1),

[
Ŵ(t2), ρ0

]]
+ · · ·

(6)

Consequently, through first order in the perturbation, we find that

〈
Ŷ(t)

〉
=

〈
Ŷ
〉

0 −
i
~

∫ t

−∞

Tr(Ŷ(t)
[
Ŷ(t′), ρ

]
)dt′. (7)

Cyclically permuting under the trace leads to

〈
Ŷ(t)

〉
=

〈
Ŷ
〉

0 −
i
~

∫ t

−∞

χYW(t, t′)dt′, (8)

in which

χYW(t, t′) =
〈[

Ŷ(t), Ŵ(t′)
]〉

0 (9)

is the two-time response function, and
〈
· · ·

〉
0 signifies a trace with the equilibrium or initial den-

sity matrix, ρ̂0. The quantum susceptibility to linear order is χYW(t, t′). This quantity governs the
relaxation of a quantum system. For example, the crux of quantum linear-response theory is that
the fluctuation 〈

δY(t)
〉

=
〈
Ŷ(t)

〉
−

〈
Ŷ(t)0

=
−i
~

∫ t

−∞

χYW(t, t′)dt′
(10)

is determined by the time integral of the average value of the commutator of the observable at time
t with the perturbation at time t’.A few useful properties of χYW(t, t′) are

χYW(t, t′) = −χYW(t, t′) = −χY∗W(t, t′). (11)

These relationships follow because χYW is a commutator.

1.1 Fluctuation-Dissipation Theorem

Consider the general fluctuation

S YW(t, t′) =
〈
δŶ(t)δŴ(t′)

〉
0

=
〈
Ŷ(t)Ŵ(t′)

〉
0 −

〈
Ŷ(t)0

〈
Ŵ(t′)

〉
0.

(12)

Kapil Adhikari Prithvi Narayan Campus



Screeing and Plasmons (Lec-03) PHY661(2076)

The fluctuation-dissipation theorem equates fundamentally the spontaneous fluctuations that occur
in an equilibrium system with the relaxation of a non-equilibrium system displaced from equilib-
rium. The equilibrium density matrix is

ρ0 = e−βH0 (13)

The correlation function S YW(t, t′) is a function of the time difference t − t′ rather than of t and t′

separately. We want to show that S YW(t, t′) is related to χYW. To do this, we first compute〈
Ŷ(t)Ŵ(t′)

〉
0 = Tr

[
e−βH0 Ŷ(t)Ŵ(t′)

]
= Tr

[
e−βH0Ŵ(t′)e−βH0 Ŷ(t)eβH0

]
=

〈
Ŵ(t′)Ŷ(t + iβ~)

〉
0.

(14)

Coupled with the identity〈
Ŷ(t)

〉
0 = Tr

[
e−βH0 Ŷ(t)

]
= Tr

[
e−βH0e−βH0 Ŷ(t)eβH0

]
=

〈
Ŷ(t + iβ~)

〉
0,

(15)

we arrive at the equality S YW(t, t′) = S YW(t′, t + iβ~). In Fourier space, we have

S YW(ω) =

∫ ∞

−∞

d(t − t′)S YW(t, t′)eiω(t−t′)

=

∫ ∞

−∞

d(t − t′)S WY (t′, t + iβ~)eiω(t−t′).

(16)

Let x = t′ − t − iβ~; dx = d(t′ − t). The Fourier transform of S YW becomes

S YW(ω) = eβ~ω
∫ ∞

−∞

dxS WY (x)e−iωx

= eβ~ωS WY (−ω).
(17)

Combining these results to calculate χYW(ω),

χYW(ω) =

∫ ∞

−∞

d(t − t′)eiω(t−t′)〈[Ŷ(t), Ŵ(t′)
]〉

0

=

∫ ∞

−∞

d(t − t′)eiω(t−t′)
[
S YW(t, t′) − S WY (t′, t)

]
=

(
1 − e−β~ω

)
S YW(ω).

(18)

Consequently, spontaneous fluctuations in equilibrium are related to the linear-response function
χYW(ω). This means that relaxation oF fluctuations in a non-equilibrium system is determined by
the same laws that govern the relaxation of spontaneous fluctuations in an equilibrium system. This
is the fluctuation-dissipation theorem.
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1.2 Density Response

Let us apply linear-response theory to density fluctuations. Consider a perturbation of the form

H′(t) =

∫
drn(r, t)W(r, t), (19)

in which the electron density n(r, t) is changed by the application of an external field, W(r, t), which
commutates with n(r, t) and H0. According to linear-response theory,

〈
δn(r, t)

〉
=

∫ t

−∞

dt′dr′χnn(rt, r′t′)W(r′, t′), (20)

where
χnn(rt, r′t′) = −

i
~

〈[
n(r, t), n(r′, t′)

]〉
. (21)

As several response functions will be introduced, we stress that χnn represents the response of the
system to the external(unscreened) field. We have subsumed the − i

~ factor into the definition of the
susceptibility. In Eq. (20), the time evolution of the density is determined entirely by H0.

For free electrons, we define χ◦nn to be the response function. We showed previously that

n(r) =
1
V

∑
p,p’,σ

ei(p−p′)·r/~ a†p′σapσ (22)

is the time-independent operator for the electron density at r. We remind the reader that we have
dropped the ‘hat’ on an operator because this symbol is now reserved for the interaction representa-
tion. To define n(r, t), we need the time dependence of apσ. We obtain this through the Heisenberg
equations of motion

i~
∂apσ

∂t
=

[
apσ,H0

]
=

∑
p′,σ′

εp′σ′
[
apσ, a

†

p′σ′ap′σ′
]

= εpapσ, (23)

where H0 is the Hamiltanian for free electrons. Integrating the above, we obtain that

apσ(t) = e−iεp/~apσ(t = 0). (24)

Let us now evaluate χnn for a collection of free electrons. To simplify the notation, we define

qp12(r, t) = ei(p2−p1)·r/~ ei(εp1−εp2 )t/~, (25)

δpi j
= δpip j

, and fp1p2 = fp1(1− fp2). Combining our expression for apσ(t) together with Eq.(22), it
follows that

Kapil Adhikari Prithvi Narayan Campus



Screeing and Plasmons (Lec-03) PHY661(2076)

〈
n(r, t)n(r′, t′)

〉
=

1
V2

∑
p1,p2,p3,p4σ1,σ2

〈
a†p1σ1ap2σ1a†p3σ2ap4σ2

〉
qp12(r, t)qp34(r′, t′)

=
〈
n(r, t)

〉〈
n(r′, t′)

〉
+

1
V2

∑
p1,p2,p3,p4,σ1,σ2

δσ1σ2δp14δp23 fp1p2qp12(r, t)qp34(r′, t′)

=
〈
n(r, t)

〉〈
n(r′, t′)

〉
+

1
V2

∑
p1,p2,σ

fp1p2qp12(r − r′, t − t′)

(26)

Substitution of Eq. (15) into Eq. (21) illustrates immediately that the response function,

χ◦nn(r, t, r′, t′) =
1

i~V2

∑
p1,p2,σ

( fp1σ − fp2σ) qp12(r-r’, t − t′) (27)

and the density response function depend on the differences r-r’ and t − t′. Hence, this response
function is independent of the particular choice of origin in space as well as in time. We will find
it most useful to work with the Fourier transform of χ◦nn(rt, r′t′):

χ◦nn(k, ω) =

∫
dx dt eik.x e−iωt χ◦nn(x, t)

=
2

i~V

∑
p1,p2

δ~k,p2−p1( fp1 − fp2)
∫ 0

−∞

e−i(~ω+εp1−εp2 )t/~dt

=
2
V

∑
p1

fp1 − fp1+~k

~ω + εp1 − εp1+~k
.

(28)

In Eq. (28), the factor of 2 comes from the spin summation, and the perturbation coupling to the
density was assumed to be turned on at t = −∞ and turned off at t = 0. It is this expression that
will be used to formulate the Lindhard screening function.

Consider the zero-frequency limit of χ◦nn(k, ω),

χ◦nn(k, ω = 0) = 2
∫

dp
(2π~)3

∂ fp
∂εp

= −2
∫

dp
(2π~)3

∂ fp
∂µ

= −
∂ne

∂µ
, (29)

which is precisely the Thomas-Fermi approximation to the screening function. This suggests that
there is a fundamental connection between the density response function and screening. To estab-
lish the connection formally, we turn to the dielectric-response function.
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