
Screeing and Plasmons (Lec-04) PHY661(2076)

1 Dielectric Response Function

We reformulate the screening problem in terms of χnn by rewriting the perturbing field as

H′ =

∫
dr n(r, t) U(r, t), (1)

where U(r, t) is the local electrostatic potential energy of the charge Q, which we take to be the
Coulomb interaction. We must determine the net field felt by other electrons as a result of the test
charge Q placed at the origin. We start by writing equation

Ue f f (r, t) = U(r) +

∫
e2

〈
δn(r′, t)

〉
| r − r′ |

dr′. (2)

Fourier transforming this expression with respect to r and t,

Ue f f (k, ω) = U(k) +
4πe2

k2

〈
δn(k, ω)

〉
, (3)

and using the linear response expression for the fluctuation (equation ??)(
χnn(rt, r′t′) = − i

~ 〈[n(r, t), n(r′, t′)]〉 .
)

〈
δn(k, ω)

〉
= χnn(k, ω)U(k) (4)

we obtain

Ue f f (k, ω) =
[
1 + U(k)χnn(k, ω)

]
U(k, ω)

= ε−1(k, ω)U(k),
(5)

with ε(k, ω) the dielectric function and U(k) = 4π2/k2. It is the dielectric function that contains
the dynamics of the screening process (described in the introduction to this chapter).

To make contact with our previous treatment of screening, we introduce a generalized screening
function, χS C , through〈

δn(r, t)
〉

=
〈
n(r, t)

〉
− ne =

∫
dr′χS C(r, r′, t)Ue f f (r′). (6)

The generalized screening function.χS C , describes the response of the system to the screened po-
tential in contrast to χnn, which is simply the response to the bare potential. From Eq.(??), we see
that the Thomas-Fermi screening function is simply

χS C(r, r′, t) = −
∂ne

∂µ
δ(r − r′)δ(t). (7)

The Fourier transform of Eq.(6) yields〈
δn(k, ω)

〉
= χS C(k, ω)Ue f f (k, ω), (8)
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which, together with Eq.(3), implies that

Ue f f (k, ω) =

[
1 −

4πe2

k2 χS C(k, ω)
]−1

U(k) (9)

is an equivalent expression for the total effective electrostatic potential in the presence of the test
charge Q. Equating Eqs.(9) and (5), we see immediately that

χnn = ε−1χS C =
χS C

1 − 4πe2χS C
k2

(10)

It is generally easier to construct a theory for χS C because it describes the response to the total field
of the system. The lowest-order theory for χS C is the random-phase approximation(RPA) in which
it is assumed that

χS C(k, ω) = χ◦nn(k, ω) (11)

Alternately, the effective interaction is given by the geometric series

Ue f f (k, ω) = U(k)
(
1 + U(k)χ◦nn(k, ω) +

(
U(k)χ◦nn(k, ω)

)2
+ · · ·

)
=

U(k)
1 − U(k)χ◦nn(k, ω)

.
(12)

This approximation leaves out exchange effects and is essentially time-dependent Hartee-Fock. As
shown in the previous section, the zero-frequency limit of χ◦nn is the Thomas-Fermi approximation.

To understand the role played by the frequency dependence, we expand the denominator in Eq.(28
in lecture -03) for large ω. In this limit, we find that

lim
ω→∞

χ◦nn(k, ω)→ 2
∫

dp
(2π~)3 ( fp − fp+~k)

[
1
~ω
−
εp − εp+~k

(~ω)2 + · · ·

]
= −

2
(~ω)2

∫
dp

(2π~)3 ( fp − fp+~k)(εp − εp+~k)

=
2k2

mω2

∫
dp

(2π~)3 fp =
k2

mω2 ne

(13)

The high-frequency limit of the dielectric function,

ε = 1 −
4πe2ne

mk2

k2

ω2

= 1 −
(ωp

ω

)2
,

(14)

is fundamentally related to the plasma frequency. In fact, as we will see later, the plasma frequency
is an exact zero of the dielectric function.
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Figure 1: Diagramatic expansion in the RPA for the screened electron-electron interaction. Each
bubble represents a particle-hole excitation. Mathematically, these excitations are described by
the polarizatioin function χ◦nn (k, ω). The momentum exchanged between the particle and the hole
is carried away by the Coulomb interaction at each dotted line, as indicated. As a result, the
argument of the Coulomb interaction is decoupled from the momentum summation in each bubble.
Consequently, all such terms can be summed exactly. The result is Eq. (12)
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1.1 Structure Function

The time-dependent density response function defined in the previous section is a fundamental
quantity in many-body theorem. In addition to the screening function, the structure function, as
well as the total energy of an interacting system, can all be written in terms of χnn. The principal
reason for this is that the potential in most many-body systems is typically a sum of pair-wise inter-
actions. In this section, we focus on calculating the structure function, as it will play a prominent
role in later topics.

The structure function is defined as the auto-correlation function of the Fourier components

S (k) =
1
N

〈
nkn−k

〉
(15)

of the particle density. In equilibrium neutron-scattering experiments, the central quantity that is
measured is the structure factor. As advertised, we can also write the total average energy of an in-
teracting electron system in terms of S (k, ω). This can be done trivially by computing the average
value of the Hamiltonian for an interacting electron gas

〈
H

〉
= E0 = εkin +

∑
k

2πe2

k2

[
S (k) − N

]
(16)

in momentum space(see Eq.8.18).
In the time domain, the structure function becomes

S (k, t) =
1
N

〈∑
i

eik.ri(0)
∑

j

e−ik.r j(t)
〉
. (17)

By noting that

eik.ri =

∫
dreik.rδ(r − ri) (18)

and the density at r is

n(r) =

N∑
i=1

δ(r − ri), (19)

we rewrite Eq. (17) as

S (k, t) =
1
N

∫
drdr′

〈
n(r, t = 0)n(r′, t)

〉
eik.(r−r′). (20)

As we have seen,
〈
n(r, t)n(r′, t′)

〉
depends only on r − r′ and t − t′. Hence, our choice of the time

origin at t = 0 does not affect our results. The dynamic structure factor is the time Fourier transform

S (k, ω) =

∫ ∞

−∞

dte−iωtS (k, t) (21)

Kapil Adhikari Prithvi Narayan Campus



Screeing and Plasmons (Lec-04) PHY661(2076)

of S (k, t). It is S (k, ω) that is measured in angle-resolved x-ray or neutron-scattering experiments.
The static and dynamic structure factors are related through the simple sum rule

S (k) =

∫ ∞

−∞

dω
2π

S (k, ω). (22)

For systems with inversion symmetry, such as most solids and all fluids, S (k, ω) is invariant under
a change of sign of k : S (k, ω) = S (−k, ω). From Eq.(??), it follows that S (k, ω) = eβ~ωS (k,−ω).
This relationship reflects the principle of detailed balance.
From Eq.(??), we have

i~χnn(k, ω) = ne

∫ 0

−∞

dte−iωt
∫ ∞

−∞

dω′

2π
eiω′t

[
S (k, ω′) − S (k,−ω′)

]
= ne

∫ ∞

−∞

dω′

2πi
S (k, ω′) − S (k,−ω′)

ω′ − ω

= ne

∫ ∞

−∞

dω′

2πi
(1 − e−β~ω

′

)
S (k, ω′)
ω′ − ω

.

(23)

We see, then, that the density response function, χnn(k, ω), can in principle be determined from
experiment, once S (k, ω) is known.
An expression identical to Eq.(16) can be derived, using parameter differentiation. We consider a
variation of the ground state energy with respect to e2:

∂

∂e2 E0(e2) =
∂

∂e2

〈
ψ(e2)|H|ψ(e2)

〉
=

(
∂

∂e2

〈
(e2)

)
|H|ψ(e2)

〉
+

〈
ψ(e2)|H

(
∂

∂e2 |ψ(e2)
〉)

+
〈
ψ(e2)|

∂H
∂e2 |ψ(e2)

〉
= E0(e2)

∂

∂e2

〈
ψ(e2)|ψ(e2)

〉
+

〈∂H
∂e2

〉
=

〈
ψ|
∂H
∂e2 |ψ

〉
.

(24)

We have used the fact that H|ψ(e2)
〉

= E0|ψ(e2)
〉
. Because the kinetic energy is independent of e2

and V ∼ e2,we have that

∂E0

∂e2 =
1
e2

〈
ψ|Ve|ψ

〉
, (25)

where Ve is the total potential for our interacting system:

Ve = Vee + Vion−ion + Ve−ion

= e2
[
1
2

∑
j, j′

1
| r j − r′j |

+
1
2

∫
drdr′

n2
e

r − r′
−

∑
j

∫
dr

ne

| r − r j

]
.

(26)

The second and third terms in the total potential represent the ion-ion and electron-ion interactions,
respectively. The ions provide a homogeneous back-ground of compensating positive charge for
the electron gas. If we substitute the form for the density in Eq. (19), we can rewrite the total

Prithvi Narayan Campus 5 Kapil Adhikari



PHY661(2076) Screeing and Plasmons (Lec-04)

potential as

Ve

e2 =
1
2

∫
drdr′

n(r)n(r′)∣∣∣r − r′
∣∣∣ +

n2
e

2

∫
drdr′∣∣∣r − r′

∣∣∣ − ne

∫
drdr′

n(r′)∣∣∣r − r′
∣∣∣

=
1
2

∫
drdr′

(n(r) − ne)(n(r′) − ne)∣∣∣r − r′
∣∣∣ .

(27)

Cosequently,

δE0

δe2 =
1
2

∫
drdr′

〈
δn(r)δn(r′)

〉∣∣∣r − r′
∣∣∣

=
ne

2

∫
drdr′

∫
dk

(2π)3

eik(r−r′)∣∣∣r − r′
∣∣∣
∫ ∞

−∞

dω
2π

S̃ (k, ω)

=
neV

2

∫
dk

(2π)3

4π
k2

∫ ∞

−∞

dω
2π

S̃ (k, ω),

(28)

where we introduced a rescaled structure factor

neS̃ (k, ω) =

∫ ∞

−∞

dte−ı~te−ık(r−r′)〈δn(r)δn(r′, t)
〉
d(r − r′). (29)

The advantage of this definition of the structure factor is that it eliminates the n2
e-term that would

normally appear in the energy. This term simply shifts the zero of the potential energy and, hence,
is of no real consequence.
Using the sum rule in Eq.(22) for S (k, ω) yields

E0(e2) = E0(e2 = 0) +
N
2

∫ e2

0
de′2

∫
dk

(2π)3

4π
k2 S̃ (k; e′2), (30)

where we have allowed for explicit e2-dependence in the static structure factor. This is an exact
expression. If the free-particle form for S̃ (k) is used, Hartee-Fock theory results. Inclusion of the
effects of screening allows us then to reduce E0(e2) to the Gell-Mann-Brueckner perturbative ex-
pansion.

1.2 Evaluation of χS C(k, ω)

Our goal now is to evaluate completely the effects of screening in the RPA. We start by rewriting
the screening function as
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χS C(k, ω) = χ◦nn(k, ω) = 2
∫

dp
(2π~)3

( fp − fp+~k)

(~ω + εp − εp + ~k)

= 2 lim
η→0

∫ ∞

−∞

dω′

ω − ω′ + iη

∫
dp

(2π~)3 ( fp − fp+~k) × δ(~ω′ − εp+~k + εp).
(31)

Using Eq.(23), we rewrite the right side in terms of the structure factor. We find that

4π~
∫

dp
(2π~)3 ( fp − fp + ~k)δ(~ω′ − εp + ~k + εp) = ne(1 − e−β~ω

′

)S 0(k, ω′), (32)

where S 0(k, ω′) is the structure factor for the free system. We simplify the left side of this expres-
sion by noting that fp − fp+~k = fp(1− fp+~k)− fp+~k(1− fp) and 1− fp = eβ(εp−µ) fp. Consequently,

fp − fp+~k = fp(1 − eβ(εp − εp+~k)), (33)

and the explicit temperature-dependent factor multiplying the free-particle structure function can
be eliminated to yield

neS 0(k, ω) = 4π~
∫

dp
(2π~)3 fp(1 − fp+~k)δ(~ω − εp+~k = εp). (34)

The factor 1 − fp+~k is the probability that the state with momentum p + ~k is empty. Hence,
S 0(k, ω) is determined by the number of ways a particle can exchange energy with a hole with a
total energy change ~ω = εp − εp+~k. In this sense, S 0(k, ω) can be thought of as the effective
density of states for particle-hole excitations.
To evaluate the integral in Eq.(34) at T = 0, we shift the momentum in fp+~k by −~k, so that the
resultant integrand

∫
dp

(2π~)2 ( fp − fp+~k)δ(~ω − εp+~k + εp)

=

∫
dp

(2π~)2 fp
[
δ(~ω − εp+~k + εp) − δ(~ω − εp + εp−~k)

]
=

∫
dp

(2π~)2 fp

[
δ
(
~ω −

(~k)2

2m
−

p.~k
m

)
− δ

(
~ω +

(~k)2

2m
+

p.~k
m

)]
= Iω − I−ω

(35)

will contain a single Fermi distribution function. We now transform to spherical coordinates and
obtain

Prithvi Narayan Campus 7 Kapil Adhikari



PHY661(2076) Screeing and Plasmons (Lec-04)

Tω =
1
π~2

∫ pF

0
p2dp

∫ 1

−1
dµδ

(
~ω −

(~k)2

2m
−
~kpµ

m

)
=

m
πk~3

∫ pF

0
pdpΘ

(
1 −

∣∣∣∣∣ m
~kp

(
~ω −

(~k)2

2m

)∣∣∣∣∣)
=

m
πk~3

∫ pF

m
hbark

∣∣∣~ω− (~k)2
2m

∣∣∣ pdp

=
m

2πk~3

[
p2

F −

( m
~k

(
ω −

(~k)2

2m

))2]
× Θ

(
pF −

m
~k

∣∣∣∣~ω − (~k)2

2m

∣∣∣∣)
(36)

Here Θ(x) is the Heaviside step function.
Subtracting the ω→ −ω contribution, we find that

Iω − I−ω =
m

2πk~3

[
p2

F −

( m
~k

(
ω −

(~k)2

2m

))2]
× Θ

(
pF −

m
~k

∣∣∣∣∣~ω − (~k)2

2m

∣∣∣∣∣)
−

m
2πk~3

[
p2

F −

( m
~k

(
~ω +

(~k)2

2m

))2]
× Θ

(
pF −

m
~k

∣∣∣∣∣~ω +
(~k)2

2m

∣∣∣∣∣)
(37)

results. The Heaviside step function imposes the constraint

(~k)2

2m
− ~kvF ≤ ω ≤

(~k)2

2m
+ ~kvF (38)

for the first term and

0 ≤ ω ≤ hbarkvF −
(~k)2

2m
(39)

for the second. For ω ≥ 0, the restrictions are represented graphically in Fig.(1.2) with ω± =
(~k)2

2m ± ~kvF .
Because the range of ω for the first term in Eq.(37) exceeds that for the second, we consider three
separate cases corresponding to
a) both terms contributing, b)only the first, andc)neither:
Case a) 0 ≤ ω ≤ ~kvF −

(~k)2

2m

Iω − I−ω = neS 0(k, ω) =
m

2πk~3

[
p2

F −

( m
~k

(
~ω −

(~k)2

2m

))2
−

[
p2

F −

( m
~k

(
~ω +

(~k)2

2m

))2]]
(40)

⇒ neS 0(k, ω) =
m2ω

π~2k
; (41)
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Case b)~kvF −
(~k)2

2m ≤ ω ≤
(~k)2

2m + ~kvF

⇒ neS 0(k, ω) =
m

2πk~3

[
p2

F −

( m
~k

(
~ω −

(~k)2

2m

))2]
; (42)

Case c) ~ω ≥ (~k)2

2m + ~kvF

⇒ neS 0(k, ω) = 0. (43)

Figure (1.2) contains the composite graph for all three cases.
At finite temperature, an explicit expression can also be obtained for neS 0(k, ω). We simply need
to compute Iω and then let ω→ −ω.

Figure 2: Frequency range for the zero-temperature structure function.

Figure 3: Zero-temperature function as predicted from Eqs. (41)-(43)

Froom Eq.(34), we have that
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Iω =
m
πk~3

∫ pF

1
2~k

∣∣∣2m~ω−k2~2
∣∣∣ pdp

eβ(εp−µ) + 1

=
m2

βπk~3

∫ pF

a

βp
m

dp
1

eβ(εp+) + 1

=
m2

βπk~3

∫ βp2
F

2m

βa2
2m

dx
ex−βµ + 1

.

(44)

With the help of the integral ∫
dx

1 + becx =
1
αc

[
cx − ln

(
α + becx)], (45)

which implies that

Iω =
m2

βπ~3k

[
x − ln

(
1 + ex−βµ

)] βp2
F

2m

βa2
2m

, (46)

we obtain the final expression for the temperature-dependent structure

(1 − eβ~ω)neS 0(k, ω) = Iω − Iω =
m2

βπ~3k

[
β~ω + ln

[ 1 + exp
(
β
(

1
2m

(
m~ω

k
~k
2

)2
− µ

))
1 + exp

(
β
(

1
2m

(
m~ω

k + ~k2

)2
− µ

))]]

. In the limit of zero temperature, we obtain the expression previously derived at T = 0.

1.3 Dielectric Function

We turn now to the calculation of the dielectric-response function,ε(k, ω) = 1 − 4πe2χS C(k, ω)/k2,
where the screening function at the RPA level,

χS C(k, ω) = lim
η→0

∫ ∞

−∞

dω′

2π~
neS 0(k, ω′)(1 − e−β~ω

′

)
ω − ω′ + iη

, (47)

is a convolution of the structure function. In the limit that η → 0, the screening function will
acquire real and imaginary parts through

lim
η→0

1
ω − ω′ + iη

= P
1

ω − ω′
− iπδ(ω′ − ω). (48)
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The corresponding real (1 + εR(k, ω)) and imaginary (εI) parts of the dielectric function are

1 + εR(k, ω) = 1 −
4πe2

k2 P
∫ ∞

−∞

dω′

2π~
neS 0(k, ω′)(1 − e−β~ω

′

)
(ω − ω′)

(49)

and

eI =
2πe2

k2~
neS 0(k, ω)(1 − e−β~ω), (50)

respectively. In the limit of zero temperature, S 0(k, ω) is linear in frequency and, hence, εI is an
odd function of frequency.
The real and imaginary parts of the dielectric function are related as a result of the causal nature of
the response to the test charge. From the definition of εR and εI , it follows immediately that

εR =
1
π

P
∫ ∞

−∞

dω′εI(k, ω′)
ω′ − ω

(51)

and

εI =
−P
π

∫ ∞

−∞

dω′εR(k, ω′)
ω′ − ω

. (52)

These relationships are known as the Kramers-Kronig relationships.Relationships of this sort are
true in general for any complex function that is analytic in either the upper- or lower-half planes.
In the context of linear-response theory, they stem fundamentally from the causal nature of the
response to the time-dependent perturbation.
Lindhard has shown that at T = 0, εR is given by

εR =
k2

T F

k2

{
1
2

+
kF

4k

[{
1 −

(ω − ~k
2

2m )2

k2v2
F

}
ln

∣∣∣∣∣∣ω − kvF −
~k2

2m

ω + kvF −
~k2

2m

∣∣∣∣∣∣ +

{
1 −

(ω + ~ka2

2m )2

k2v2
F

}
ln

∣∣∣∣∣∣ω + kvF + ~k
2

2m

ω − kvF + ~k
2

2m

∣∣∣∣∣∣
]}

(53)

Figure 4: Real (εR) and imaginary (εI)
parts of the dielectric function at T = 0.
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Note first that this function is independent of the sign of ω. Hence, its parity is opposite that
of εI . The general frequency dependence of the dielectric function is shown in Fig.(1.3). The
large value of εR for ω → 0 indicates that the static screening is large. Another feature of the
dielectric-response function is that ε(k, ω) = 0 at the plasma frequency. The poles of ε−1(k, ω)
occur at the excitation frequencies of the electron gas. Recall that this is precisely the result we
derived previously in the context of a small k and large ω expansion for the dielectric function.
When ε(k, ω) = 0, fluctuations in the electron density diverge as a result of the collective nature
of plasma oscillations. At this point, the whole theory we have formulated breaks down, because
we assumed that the electron density was a slowly varying function of the perturbing field. Let us
investigate the behaviour of ε(k, ω) for small ω. Setting ω = 0 in our expression for εR results in

ε(x, ω = 0) = 1 + εR(x, ω = 0)

= 1 +
k2

T F

k2

[
1
2

+
1 − x2

4x
ln

∣∣∣∣∣∣1 + x
1 − x

∣∣∣∣∣∣
]
,

(54)

the dielectric function in the static limit with x = k/2kF . The x = 0 limit of ε(x, ω = 0) = 1+k2
T F/k

2

is exactly the Thomas-Fermi approximation to the screening of a positive charge at the origin.
As in the Thomas-Fermi case, we can construct the spatial potential that results from this kind of
screening effect. To do so, we use the equation for the effective field Ue f f (k, ω) = ε−1(k, ω)U(k, ω).
For an electron gas, U(k, ω = 0) = 4πe2/k2. If we use our expression for ε(k, ω = 0), we find that

φe f f (r) = 4πe
∫

dk
(2π)3

e−ik.r

k2 + k2
T F Q(k)

(55)

is the spatial dependence of the effective potential, where Q(k) denotes the bracketed term in
Eq.(55). When k = 2kF , Q(k) is logarithmically divergent. This divergence yields a contribu-
tion to the electrostatic potential of the form

φe f f ∼
cos 2kFr

r3 , (56)

as r → ∞. This oscillatory behavior of the electrostatic potential is a consequence solely of screen-
ing and is known as a Friedel oscillation. At long distances, then, we find that the charge is not
sufficiently screened to give rise to the e−kT Fr/r of Thomas-Fermi theory. Algebraic decay of the
electrostatic potential signifies that a localized external charge affects the charge density every-
where in the electron gas. Kohn was first to argue that this slow decay of the screened electrostatic
potential arises from the sharpness of the Fermi surface. This effect shows up in the phonon spec-
trum of a metal for excitations with net momentum transfer k ≥ 2kF . He also pointed out with
Luttinger that the negative contribution from φe f f gives rise to a superconducting instability in an
electron gas at T = 0. This observation is significant because it illustrates that if left alone, an
electron gas with bare repulsive interactions can become superconducting without the assistance of
phonons.

Kapil Adhikari Prithvi Narayan Campus



Screeing and Plasmons (Lec-04) PHY661(2076)

SSSSSSSS

Prithvi Narayan Campus 13 Kapil Adhikari


