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1 Stopping Power of a Plasma

When an electron is injected into a plasma with some incoming energy, it is expected to be slowed
as a result of the Coulomb interactions with the electrons in the plasma. On these grounds, Bethe
argued that the rate of energy loss of the injected electron should be proportional to

∣∣∣Vint(p)
∣∣∣2, where

Vint is the Coulomb interaction between the plasma and the electron. For a Coulomb potential,
Vint ∼ p−2. Summing over all incoming momentum values, we find that the energy loss is given by

dE
dt
∝

∫
dpp

∣∣∣Vint(p)
∣∣∣2 ∝ ∫ pF

0

dp
p
. (1)

This integral is logarithmically divergent at the lower limit. As a result, this simple account pro-
duces a divergent energy loss, which is clearly incorrect. We see immediately that, for a screened
interaction, the divergence at the lower limit would vanish, thereby making dE/dt finite. This is
the primary failure of the Bethe approach. We will now formulate this problem in a rigorous way
that gets around the Bethe divergence by including the effects of screening.

The physical problem at hand is that of a metal in some initial state |i〉 and an electron with initial
momentum p impinging on a metal. Upon interacting with the metal, the electron will have a new
momentum,p − ~k, and the metal will be in some new state| f 〉. We assume the states of the metal
form a complete orthonormal set〈n|m〉 = δnm. At the level of Fermi’s golden rule, the transition
rate between the initial and final states is

Wp, p−~k =
2π
~

∑
f

| 〈 f ,p − ~k|Vint|i,p
〉
|2 δ

( p2

2m
+ Ei −

(p − ~k)2

2m
− E f

)
, (2)

where Ei and E f are the total energies of the states |i〉 and | f 〉, respectively. The interaction energy

Vint(r) =

∫
dr′ [n(r′) − ne]

e2

| r′ − r |
(3)

includes the ion as well as the electron Coulomb energy. The initial state of the electron is a plane
wave of the form |p〉 = eip·r/~

/√
V and the final electron state is |p − ~k〉 = ei(p−~k).r/~

/√
V . With

these states, we rewrite the matrix element in Eq.(2) as

〈
f ,p − ~k|Vint|i,p

〉
=

∫
drdr′

〈
f |n(r′) − ne|i

〉eik.r

V
e2

| r − r′

=
4πe2

k2

∫
dr
V

eik.r 〈 f |n(r)|i〉 .
(4)

Using the integral representation of the δ- function,

2π~ δ(~ω + Ei − E f ) =

∫ ∞

−∞

ei(~ω+Ei−E f )t/~dt,
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we recast the transition rate as

Wp,p−~k =

( 4πe2

V~k2

)2 ∫ ∞

−∞

ei(~ω+Ei−E f )t/~dt
∑
f,i

| 〈 f |
∫

drn(r)eik.r |i〉 |2

=

( 4πe2

V~k2

)2 ∫ ∞

−∞

dt eiωt
∑
f,i

〈 f | n(k) |i〉 〈i| eiEi
t
~ n(k) e−iE f

t
~ | f 〉 ,

(5)

with ~ω = εp − εp−~k. In the interaction representation,

n̂(k, t) = eiH0
t
~ n(k)eiH0

t
~ . (6)

Consequently,

Wp, p−~k =

( 4πe2

V~k2

)2 ∫ ∞

−∞

eiωt dt
∑
f,i

〈i| n̂(k, t) | f 〉 〈 f | n(k) |i〉 , (7)

which can be simplified to

Wp, p−~k =

(4πe2

~k2

)2 ne

V

[
S (k, ω) −

1
V

2πδ(ω)ne
]

(8)

using the definition of the structure function and the completeness relation for the metal states,
∑
| f 〉 〈 f | =

1. As excepted, it is the dynamic structure factor that determines the response of our system to the
incident electron.Screening effects are implicitly included in S (k, ω). The Bethe result arises from
the zero-frequency part of the transition rate.

We are primarily interested in the rate of energy loss to the plasma. This is determined by summing
over all of the energy differences, ε − εp−~k, weighted by the transition rate, W:

dE
dt

= −
∑

k
(εp − εp−~k)Wp, p−~k

= −
~ne

V

∑
k
ω
(4πe2

~k2

)2
S (k, ω)

= −ne

∫
dk

(2π)3

(4πe2

~k2

)2 ∫ ∞

−∞

ωdωS (k, ω) × δ(~ω − εp + εp−~k).

(9)

To evaluate this quantity, we switch to polar coordinates and perform first the θ integral for the
angle between p and p − ~k:

2π
∫ π

0
dθ sin θδ(~ω − εp + εp−~k) = 2π

∫ 1

−1
dxδ

(
~ω +

~2k2

2m
−

p~kx
m

)
=

2πm
p~k

Θ(kvp− | ω + ~k2/2m |)
(10)
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With this result, the rate of energy loss to the plasma simplifies to

1
vp

dE
dt

=
−4e4ne

~2v2
p

∫ ∞

0

dk
k3

∫ kvp−
~k2
2m

−kvp−
~k2
2m

ωdωS (k, ω), (11)

where vp is the incoming velocity of the incident electron.

Complete stoppage of the electron by the plasma most likely to occur if the electron gas acts col-
lectively, that is, if plasma oscillations dominate. Thus, the electron gas obtains maximum stopping
power if | ω |= ωp, the plasma frequency. We seek, then, an expression for the structure function
in the limit of high frequency. From the definition of the dielectric function(see Eqs. ?? and ??),
we express the imaginary part of ε(k, ω)−1,

Imε−1 = −
2πe2ne

~k2

(
1 − e−β~ω

)
S (k, ω), (12)

in terms of the structure function and use the high-frequency expansion for the dielectric function

ε(ω) ∼ lim
η→0

(
1 −

ω2
p

(ω + iη)2

)
. (13)

In this limit, the imaginary part of ε−1,

Imε−1(ω) = lim
η→0

Im
[

ω2

(ω + iη)2 − ω2
p

]
= −

πωp

2
[δ(ω − ωp) − δ(ω + ωp)],

(14)

is a sum of two δ functions at ±ωp. With the aid of Eq.(12), we see immediately that in the k → 0
limit,

S (k, ω) =
~πk2

m
[δ(ω − ωp) − δ(ω + ωp)]

1 − e−β~ω
. (15)

The ω-integral in Eq.(11) is now straightforward:
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∫ ωu

ωl
ωdωS (k, leω) =

~πk2

m
(1 + gp)Θ(ωl ≤ ωp ≤ ωu) −

πk2

m
gpΘ(ωl ≤ −ωp ≤ ωu), (16)

where ωl = −kvp − ~k2/2m and ωu = kvp − ~k2/2m. In evaluating this integral, we introduced
gp = (eβ~ωp − 1)−1, whhich determines the number of plasmons thermally excited at a temperature
T. The energy loss is transformed to

1
vp

dE
dt

= −

(ωpe
~vp

)2 ∫
dk
k

(1+gp)Θ
(
~kvp−

(~k)2

2m
−~ωp ≥ 0

)
−gpΘ

( (~k)2

2m
−~kvp ≤ ~ωp ≤

(~k)2

2m
+~kvp

)
.

(17)

The first term represents the energy loss upon the creation of a plasmon and the latter the energy
transferred to the electron by a plasmon thermally excited in the medium. As T → 0, the probabil-
ity that a plasmon will be thermally excited vanishes. As a result, plasmons can be excited only by
an impinging electron. In this limit, the energy loss takes on the simple form:

1
vp

dE
dt

= −

(ωpe
~vp

)2 ∫
dk
k

Θ

(
~kvp −

~2k2

2m
− ~ωp ≥ 0

)
= −

( ωp

~vp

)2
ln

k+

k−
,

(18)

where k± are the solutions to

~2k2 − 2m~kvp + 2m~ωp = 0, (19)

or, equivalently,

~k± = p ±
√

p2 − 2m~ωp. (20)

For the incident electron to excite a plasmon, p2

2m ≥ ωp. If we expand k± in this limit, we find that

k± = p ± (p − m~ωp/p) =

{
2p − m~ωp/pm~ωp/p

}
. (21)
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We expect an absence of collective plasmon oscillations if k ≤∼ a−1 where a is the interparticle
spacing. We should then cut off k+ at 2pF .
As a consequence,

dE
dt

= −
ω2

pe2

v2
p

ln
2ppF

m~ωp
, (22)

which is completely well behaved and finite, unlike the Bethe result.
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