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Figure 1: The two electronic systems that are used to compute the pair-binding energy for n = 1.
Pair binding occurs if the energy of (b) is lower than the energy of (a) . Whether or not this state of
affairs obtains for purely electronics reasons depends on the relative magnitudes of the holon-holon,
spinon-spinon, and holon-spinon interaction strengths.

1 Pair Binding: Can Electrons do it alone?

It is well known from the early argument of Kohn and Luttinger that any Fermi system has a super-
conducting instability (albeit at an ultra-low temperature on the order of 10−5K) when electronic
vertex corrections are considered. Since their work, there have been numerous arguments presented
for purely electronic mechanisms of superconductivity. Rather than present a specific mechanism,
we focus instead on a general way of understanding pair binding from purely electronic consider-
ations by appealing to the holon-spinon construct. Let Φn be the energy of an electronic system
containing n extra electrons. The pair-binding question is as follows: do two isolated systems, each
containing n + 1 and n − 1 extra electrons, have lower total energy than two separate systems with
n extra electrons? The energy difference

E(n)pair = 2Φn − Φn+1 − Φn−1 (1)

is the pair-binding energy. If E(n)pair ≥ 0, pairing is expected, as a net attraction favors dispro-
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portionation into n + 1 and n − 1 states. To illustrate that pair binding can result from repulsive
interactions alone, we adopt the spin-charge dichotomy of the Luttinger liquid. For simplicity, we
consider the case in which n = 1, as illustrated in Fig.(1). To compute the pair-binding energy, we
must evaluate 2Φ1 − Φ2 − Φ0. We set Φ0 = 0 and let Eh and Es be the energy of the holon and
spinon, respectively. Also, we define Vhh and Vhs to be the holon-holon and holon-spinon interac-
tion. The relevant physical system is illustrated in Fig.(1). Within an additive constant, the energy
of 2Φ1,

2Φ1 = 2(Eh + Es + Vhs), (2)

is simply the sum of the energy of two independent electronic systems with an extra electron added
and that of the doubly occupied state is

Φ2 = 2Eh + Vhh + 4Vhs + Vss + 2Es. (3)

The factor of 4 arises from the two holon-spinon interactions for each electron and the cross inter-
action between the two electrons. We have assumed that the spinon energy in the singlet is zero.
The energy difference between these states is

E(1)
pair = −(2Vhs + Vhh + Vss). (4)

Now for an electron to be stable, Vhs ≤ 0. Also, Coulomb’s law dictates that Vhh ≥ 0. The spinon-
spinon interaction energy then is the crucial quantity that dertermines whether or not E(1)

pair ≥ 0. In

some situations, Vss is of the right magnitude, such that E(1)
pair ≥ 0. In this case, pair binding can

occur from purely repulsive electron interactions.

2 Excitation Spectrum

If we compare Eq.(??) with the standard Hamiltonian for a harmonic oscillator, H = P2 + Q2,
where P and Q are the canonical momentum and position, we find an equivalence between the
bosonized charge sector and a collection of harmonic oscillators. As advertised, charge excitations
in the Luttinger model are the usual bosonic modes, known more commonly as plasma excitations.
What is the appropriate density of states for these excitations? It might be suspected that they
are governed by the standard Bose-Einstein distribution. However, this is not the case. Charge
excitations in a Luttinger liquid have a vanishing density of states at the Fermi level of the form,
〈k − kF〉

∠, which is due entirely to the correlations among the electrons. The power law is given by
∠ = (gc + g−1

c )/2 − 1. Hence, rather than the smooth density of states indicative of Fermi liquids,
Luttinger liquids develop a soft gap at the Fermi level for any U , 0. The source of this effect can
be traced to the renormalization of vc

F by gc in the bosonized form of the electron gas.
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We establish this result by calculating the total charge correlator

G(x) =

〈∑
σ

(Ψσ+(x)Ψ†
σ+(0) + Ψσ−(x)Ψ†

σ−
(0))

〉
. (5)

To compact the notation, we define

Θσ(x) =

∫ x

−∞

Πσ(x′)dx′. (6)

For each spin component, we make the substitution Φ↑(↓) = (Φc±Φs)/
√

2 and Θ↑(↓) = (Θc±Θs)/
√

2,
where the upper sign applies to up spins and the lower sign to down spins. In the absence of a mag-
netic field, n↑(x) = n↓(x). As a result, all averages linear in either Φs or Πs vanish identically.
We simplify the average in Eq.(5) even further by using the transformed fields Φ̃γ(x) and Π̃γ(x).
The average in Eq. (5) will now be over the ground state of the non-interacting bosonized system
characterized by the renormalized Fermi velocities, vc

F and vs
F . Consequently, we can use the stan-

dard rules for simplifying the average of a product of exponentials of boson operators. Using the
third form for the Baker-Hausdorff identity (Eq.??), we find that the correlator of the total electron
density simplifies to

G(x) =
1
πa

eıphasee
π
2
∑
γ=c,s(g−1

γ aγ+gγbγ), (7)

where

aγ = 〈Φ̃γ(x)Φ̃γ(0) − Φ̃2
γ(0)〉 (8)

and

bγ = 〈Θ̃γ(x)Θ̃γ(0) − Θ̃2
γ(0)〉. (9)

The phase is determined by the cross terms. For both charge and spin fields, the cross terms are
of the form 〈Φ̃γ(0)Θ̃γ(0) + ˜Thetaγ(0)Φ̃γ(0)〉 − 〈Φ̃γ(x)Θ̃γ(0) + Θ̃γ(x)Φ̃γ(0)〉. This term is identically
zero.

The simplest way to evaluate the averages in G(x) is to introduce the Fourier expansion for free
boson fields:
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Φ̃γ(x) =

∫ ∞

−∞

dp

2π
√

2 | p |
e−a|p|/2[φγ(x)eıpx + φ†γ(p)e−ipx]

Π̃γ(x) =

∫ ∞

−∞

dp | p |

2π
√

2 | p |e−a|p|/2
[−iφγ(x)eipx + iφ†γ(p)e−ıpx],

(10)

where

[φγ(p), φ†γ(q)] = 2πδ(q − p) (11)

and γ = c, s. From these expressions, it follows that

〈Φ̃γ(x)Φ̃γ(0) − Φ̃2
γ(0)〉 =

1
4π

ln
(

a2

a2 + x2

)
. (12)

The derivation of the analogous result for the conjugate field is a bit more complicated, and, hence,
we perform the calculation explicitly. From the definition of Θ̃(x), we reduce the correlator of
Θ̃γ(x) to

〈Θ̃γ(x)Θ̃γ(0) − Θ̃2
γ(0)〉 =

∫ x

0
dx′

∫ 0

−∞

dx′′〈Π̃γ(x′)Π̃γ(x′′)〉. (13)

To simplify the average over the conjugate momentum fields, we note that 〈φγ(p)φ†γ(q)〉 = 2πδ(p −
q). Consequently,

〈Π̃γ(x′)Π̃γ(x”)〉 =

∫ ∞

−∞

dp | p |
4π

eip(x′−x”)e−a|p|

=
−1
2π

[
(x′ − x”)2 − a2

(a2 + (x′ − x”)2)2

]
.

(14)

Substituting this expression into Eq.(13), we find that

〈Θ̃γ(x)Θ̃γ(0) − Θ̃2
γ(0)〉 =

1
2π

∫ x

0
dx′

∫ x′

∞

dy
y2 − a2

(a2 + y2)2

=
−1
2π

∫ x

0
dx′

y
a2 + y2 =

1
4π

ln
a2

a2 + x2

(15)
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and, hence, the correlator (Eq.7) of the total electron density

G(x) ∝| x |−
gc+g−1

c +gs+g−1
s

4 (16)

decays algebraically as a function of distance. Algebraic decay of the electron correlator is the key
defining feature of 1d correlated-electron systems. The momentum-distribution function about kF

is defined through the Fourier transform

n(k) =

∫ L
2

−L
2

dxei(k−kF )xG(x)

∝

∫ L
2

−L
2

dxei(k−kF )x | x |−
gc+g−1

c +gs+g−1
s

4 .

(17)

Changing variables to y = (k−kF)x, we find that the momentum distribution function for electronic
excitations,

n(k) ∝| k − kF |
gc+g−1

c +gs+g−1
s

4 −1, (18)

vanishes algebracially in the vicinity of the Fermi level, as depicted in Fig. (2). For spinless elec-
trons, the factor of 2/

√
2 that arises from the transformation to charge and spin fields does not

appear. As a result, the factor of π/2 in the exponent of Eq. (7) is replaced by π. As a consequence,
the corresponding exponent for spinless electrons is (gc + g−1

c )/2 − 1. In both cases, however, we
recover the Fermi-liquid condition that the density of states is a nonzero constant at the Fermi level
by setting gγ = 1. Algebraic vanishing of the distribution function at the Fermi level signifies that
there are no well-defined quasi particles in a Luttinger liquid, unlike the Fermi-liquid case.
The characteristics value of k−kF at low temperature is given by | k2/2m−k2

F/2m | ∼ | k−kF | vF ∼

T. Hence, algebraic vanishing of the momentum-distribution function at the Fermi level translates
into an algebraic temperature dependence of the form

n(T ) ∝ T
gc+g−1

c
2 −1 (19)

for the excitation spectrum. Such algebraic scaling is expected to have profound experimental
consequences.
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Figure 2: Shown here are the momentum distribution (upper figure) and tunneling density of states
(lower figure) for a Luttinger liquid (dashed line) and a Fermi gas (solid line). The characteristic
algebraic dependence of the momentum distribution function in the vicinity of the Fermi energy is
shown. In the Fermi limit, α = 0, and the constant A = −1/2.
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3 Summary

In 1d, it is possible to develop a bosonized view of the collective excitations of an electron gas in the
presence of short-range interactions. This level of description enables a clear demonstration that
spin and charge move with fundamentally different velocities in 1d. It is yet unknown how spin and
charge separation can be formally established for d ≥ 1. In addition, Coulomb interactions in 1d
give rise to algebraic decay of the density of states at the Fermi level. Such characteristics decay of
the density of states is the signature of Luttinger-liquid behavior and is experimentally observable
in tunneling experiments.
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