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Electron-Lattice Interaction

So far, we have focused on the electron problem, treating the ions as fixed in place at their equilib-
rium positions R0

i . In the context of the electron gas, we adopted an even simpler view of the ions,
namely, that they provide a uniform background of compensating positive charge. To be able to
describe the range of physics observed in a solid, we must invoke some realism into our treatment
of ion motion. The coupling of electronic degrees of freedom with the motion of the ions is the
electron-phonon problem. Phonons in a solid arise from collective motion of the ions. Such motion
is quantized and fundamentally responsible for 1) polaron formation, 2) the electron attraction in
superconductivity, and 3) the temperature dependence of the resistivity in metals. In this lectures,
we focus on the general formulation of the electron-phonon problem and its subsequent application
to the low-temperature resistivity in metals.

1 Harmonic Chain

We begin with a brief review of a 1d chain of N atoms joined by harmonic springs. Let xi denote
the deviation of each oscillator from its equilibrium position, ω the frequency of oscillation of each
spring, and M the mass of each atom. The total Hamiltonian for this harmonic chain is

H =
∑

i

P2
i

2M
+

Mω2

2

∑
i

(xi − xi+1)2. (1)

We diagonalize this Hamiltonian by Fourier transforming the momentum

Pn =
1
√

N

∑
k

eıknaPk (2)

and the displacement operators

xn =
1
√

N

∑
k

eıknaxk, (3)

where a is a lattice constant. By noting that

∑
n

P2
n =

∑
k

PkP−k (4)

and
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∑
n

xnxn+m =
∑

k

xkx−ke−ıkma, (5)

we rewrite the Hamiltonian in k-space:

H =
1

2M

∑
k

PkP−k +
M
2

∑
k

ω2
k xkx−k, (6)

where ω2
k = 2ω2(1− coska) = 4ω2 sin2 ka/2. As a consequence, the k = 0 mode costs no energy to

excite. This is a defining feature of acoustic phonons. The k = 0 mode corresponds to a uniform
translation of the ions. By translational invariance, such a transformation cannot change the energy.
Such long-wavelength bosonic excitations which cost no energy are called Goldstone modes. In
magnetic systems, such as ferro-magnets and antiferromagnets, analogous long-wavelength exci-
tations exist, which at k = 0 cost no energy.Such excitations, known as spin waves or magnons,
constitute the low-energy excitations in magnetic systems and hence determine the magnetic con-
tribution to the specific heat, for example.

Let us define new operators

Q̃k = xk

( Mωk

2~

)1/2
(7)

and

P̃k =
Pk

(2Mωk~)1/2 , (8)

which allow us to recast H in the suggestive form

H =
∑

k

~ωk[P̃kP̃−k + Q̃kQ̃−k]. (9)

We can factorize H once we define the creation

b†k = (Q̃−k − iP̃k) (10)

and annihilation

bk = (Q̃k + iP̃−k) (11)

operators. The commutation relations obeyed by bk and b†k ,
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[b†k , bk′] = −δkk′ , (12)

follow from the canonical commutator

[P̃k, Q̃k] = −
i
2
. (13)

The factorized Hamiltonian takes on the familiar oscillator form

H =
∑

k

~ωk

(
b†kbk +

1
2

)
, (14)

which is indicative of a collection of bosons. The time dependence of the b′ks,

bk(t) = bk(t = 0)e−ıωkt, (15)

is obtained by solving the Heisenberg equations of motion,

−i~ḃk = [H, bk] = −~ωkbk. (16)

The operators b†k(t) create a collective lattice distortion with frequency ωk at time t. The spatial
resolution of this distortion is given by solving Eqs. (10) and (11) for xk

xk(t) =
1
2

( 2~
Mωk

)1/2
(bk(t) + b†

−k(t))

=

(
~

2Mωk

1/2
(bke−ıωk t + b†

−keıωk t)
) (17)

and then Fourier transforming

x`(t) =
∑

k

(
~

2MNωk

)1/2
(bke−iωkt + b†

−keiωkt)eik`a. (18)

This expression for xl(t) tells us the amplitude of the lattice vibration on site l at time t. The sum
over k is restricted to the first Brillouin zone.

Prithvi Narayan Campus 3 Kapil Adhikari


