
Electron Lattice Interaction (Lec-03) PHY661(2076)

1 Electron-Phonon Interaction

In our general many-body Hamiltonian, the interaction between each ion and the electrons is of the
form

Vei =
∑

j

Vei(r j)

=
∑
i, j

Vei(r j − Ri).
(1)

To make contact with the phonon expansion introduced in the previous section, we write the ion
coordinate in terms of a deviation from the home position: Ri = R0

i + Qi and Taylor series expand
the electron-ion potential around R0

i . To first order, we have that

Vei =
∑
i, j

Vei(r j − R0
i ) −

∑
i, j

Qi.∇ jVei(r j − R0
i ) + O(Q2) + · · · (2)

The first term defines the periodic potential seen by a conduction electron and, hence, contains no
new information regarding the coupling of the electrons to the lattice distortion. Such information
is contained in the second term. To simplify this term, we introduce the Fourier transform of the
electron-ion potential,

Vei(r) =
1
N

∑
k

Vei(k)eik.r. (3)

With this definition in hand, we write the electron-ion potential as

Vei = V0 −
i
N

∑
k,i, j

Vei(k)eik.r j × k.
∑
q,λ

(
~

2MNωq,λ

)(
1/2)λq(bq,λ + b†

−q,λ)ei(q−k).R0
i , (4)

where we have set the first term in Eq. (2) equal to V0. We restrict the sum over q and k to the first
Brillouin zone, such that

1
N

∑
i

ei(q−k).R0
i =

∑
L
δk,q+L, (5)

where the sum over L is over all reciprocal lattice vectors. We note also that the k th component of
the electron density is
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ρk =
∑

j

eik.r j . (6)

We introduce the electron-phonon coupling constant

Mq,L,λ = −i
(

~

2MNωq,λ

)1/2
(q + L).λqVei(q + L) (7)

and recast the electron-phonon term as

Vei = V0 +
∑
q,L,λ

Mq,L,λ(bq,λ + b†
−q,λ)ρq+L = V0 + He−ph. (8)

The electron-phonon coupling constant contains the product (q+L).λq. As a consequence, when λq

is perpendicular to q + L,Mq+L,λ = 0. That is, only the longitudinal acoustic phonon modes couple
to the electrons. As a result, we can drop the λ subscript, as there is only one longitudinal acoustic
mode. This is an important result. However, there are certainly longitudinal optical phonons that
couple to the electron motion. Such processes arise from a Coulombic rather than an elastic de-
formation coupling to the electron motion. In the optical phonon case, the linear q dependence of
the coupling constant, Mq, is replaced by a q−2 dependence. The inverse 1/q2 term arises from the
Fourier transform of the Coulomb interaction. In polar crystals, optical phonons dominate over the
acoustic modes. Because we are primarily interested in superconductivity, we limit our discussion
solely to the acoustic case.

Let us now compute matrix elements of He−ph. To do this, we consider the composite electron-
phonon state

∣∣∣φe−ph
〉

=
∣∣∣nk; Nq,λ

〉
. (9)

Here, the electronic state |nk〉 represents a many-body state in which nk electrons are in the single-
particle Bloch state 〈r|k〉 ≡ eik.rUk(r), and

∣∣∣〈Nq,λ
〉

denotes a many-body phonon state in which Nq,λ
phonons are in the qth lattice mode of polarization λq. The function Uq(r) has the same periodicity
of the lattice as does the Fourier coefficient, eiq.r, namely, Uk(r) = Uk(r + R0

i ). To evaluate matrix
elements of the electron-phonon interaction, it is helpful to express He−ph in second-quantized
form. The only electron operator in He−ph is the electron density, ρ̂k. In second-quantized form, ρ̂k
becomes

ρ̂k =
∑
k1,k2

〈k1|eik.r|k2〉 a
†

k1
ak2 , (10)

where the operator a†k creates an electron in the momentum state k. The electron-phonon interaction
can now be written as
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He−ph =
∑

k,L,k1,k2,q
Mq,L 〈k1|ei(q+L).r|k2〉 a

†

k1
ak2(bq + b†−q). (11)

Assuming the electron wave functions are simply plane waves, we find that the matrix element of
the density operator is given exactly by

〈k1|eik.r|k2〉 =

∫
dr
V

eir.(k+k2−k1) = δk1,k+k2 . (12)

In general, the electron wave functions need not be plane waves. We define

αq1,q2 =
〈
q1

∣∣∣q2
〉

(13)

to be the general overlap between two electronic states. Because the U′ks have the periodicity of
the lattice, the condition in Eq.(12) still holds, even when the electronic wave functions are more
complicated than plane waves. Consequently, the full electron-phonon Hamiltonian reduces to

He−ph =
∑
q,k,L

Mq,Lαk+q+L,ka†q+L+kak(bq + b†−q), (14)

when Eqs.(11-13) are determined.

As is evident, this Hamiltonian contains a myriad of electron-phonon processes, some of which
involve the electron’s moving from one Brillouin zone to another, L , 0. All such processes in
which the electron wave vector is changed by q + L +k are called Umklapp processes. In German,
umklappen means ”to flip over”. Normal processes refer to those in which momentum transfer
does not result in an electron’s changing Brillouin zones. In such cases, a phonon of wave vector
q scatters an electron with momentum k and yields an electron state with wave vector q + k.
Diagrams illustrating the various kinds of scattering processes are shown in Fig. (1).

We are interested primarily in the amplitude for emission and absorption. In emission, a phonon is
created. Hence, only the b†−q term

contributes. Likewise in absorption, a phonon is annihilated. For an emission process, the initial
and final states must be of the form

|init〉 =
∣∣∣nk+q; N−q,Nq

〉
(15)

|e f in〉 =
∣∣∣nk+q + 1, nk − 1; N−q + 1,Nq

〉
. (16)

The amplitude for emission involves the matrix elements
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Figure 1: Electron-phonon scattering. A wavy line represents a phonon, and incoming and outgoing
arrows represent electrons and holes, respectively. (a) and (c) represent absorption, whereas (b) and
(d) correspond to emission of a phonon.

〈e f in|He−ph|init〉 =
∑
q,k

Mqαk+q,k 〈e f in|a†q+kakb†−q|init〉 . (17)

Because nk+q and nk are restricted to be 1 or 0, ak |init〉 is non-zero only if nk = 1. Likewise,
a†q+k |init〉 will yield a non-zero result only if 1 − nq+k = 1. Consequently,

〈e f in|He−ph|init〉 =
∑
q,k

Mqαk+q,k

√
(1 − nq+k)nk(N−q + 1). (18)

In the event that nk = 1 and nq+k = 0, the energy difference between the initial and final states is

∆Eemis = E f in − Einit = E(q + k) − E(k) + ~ωq, (19)

where E(k) is the energy of an electron state with momentum k.

In the absorption process, the final state in this case is

|a f in〉 =
∣∣∣nk+q + 1, nk − 1; N−q − 1

〉
(20)
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As a consequence,

〈a f in|He−ph|init〉 =
∑
q,k

Mqαk+q,k

√
(1 − nq+k)nkNq. (21)

The energy difference here is

∆Eabs = E(k + q) − E(k) − ~ωq. (22)

Applying Fermi’s golden rule to the emission and absorption amplitudes yields

Wabs
k→k+q =

2π
~
〈Mqαk+q,k〉

2nkNq(1 − nq+k)δ(E(k + q) − E(k) − ~ωq) (23)

and

Wemis
k→k+q =

2π
~
〈Mqαk+q,k〉

2nk(1 − nq+k) × (N−q + 1)δ(E(k + q) − E(k) + ~ωq) (24)

for the emission and absorption rates, respectively. The δ-functions ensure that energy is conserved.
For the sake of generality, we have included explicitly the electron occupation numbers, although
nk = 1 and nq+k = 0. It is customary at this stage of our calculation to replace the electron and
phonon occupation numbers by their equilibrium Fermi-Dirac and Bose forms. This simplification
is valid only if the electron-phonon system is in equilibrium before the transition occurs. We will
find this simplification useful when we treat superconductivity.
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