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1 Ultrasonic Attenuation

Imagine that we send a beam of phonons into a metal. The total rate at which the phonons are
absorbed is determined by the direct absorption into the metal and emission back into the beam.
Consequently, the rate at which a beam loses Nq,λ phonons per unit is given by a kinetic gain-loss
equation:

dNq,λ

dt
= −
∑

p
(Wabs

p→p+q −Wemis
p→p−q). (1)

The first term represents the absorption of phonons from the beam and the second term the ree-
mission of phonons into the beam and the second term the reemission of phonons into the beam.
Inclusion of the re-emission term is essential to describe the correct physics.

We can simplify our kinetic equation by calling that the structure function for free electrons is given
by

neS 0(p, ω) =
2
V

∑
p′

fp′(1 − fp+p′)2π~δ(~ω − εp+p′ + εp′). (2)

Physically, S 0(p, ω) is the density of electron-hole excitations separated by an energy ~ω. Inspec-
tion of the expressions for the phonon absorption and emission rates reveals that they are directly
proportional to the right-hand side of the equation for the structure function. Let us assume that the
electronic states are perfect plane waves with free-particle energies εp = p2/2m. As a result, the
matrix element in Eq.(?? 13 in Lec-03) is equal to unity: αk+q,q = 1. Consequently, we rewrite the
net absorption and emission rates as

∑
p

Wabs
p→p+q =

neV
2~2 〈Mq〉

2Nq,λS 0(q, ~ωq) (3)

and

∑
p

Wemis
p→p−q =

neV
2~2 〈Mq〉

2(Nq,λ + 1)S 0(−q,−~ωq). (4)

In the context of the fluctuation-dissipation therorem, we showed that

S 0(p, ~ω) = eβ~ωS 0(−p,−~ω). (5)

Substitution of this result into the equation of motion for Nq,λ(t) yields
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N̈q,λ = −
neV
2~2 〈Mq〉

2S 0(q, ωq~)[Nq,λ − e−β~ωq(Nq,λ + 1)]. (6)

We define the net rate of phonons absorbed to be

1
τph

=
neV
2~2 〈Mq〉

2(1 − e−β~ωq)S 0(q, ~ωq) (7)

and the equilibrium phonon distribution, Neq
q,λ, to be the standard Bose-Einstein distribution func-

tion,

Neq
q,λ =

1
eβ~ωq − 1

. (8)

Consequently, our equations of motion become

N̈q,λ =
−1
τph

[Nq,λ − Neq
q,λ], (9)

and the solution to this linear differential equationn has the characteristic

Nq,λ(t) = Neq
q,λ + e−t/τph(Nq,λ(t = 0) − Neq

q,λ) (10)

exponential form. We find, then, that the number of phonons absorbed relaxes to an equilibrium
value at long times with a rate 1/τph. This effect is known as ultrasonic attentuation, the loss of
phonons to a medium as a result of interactions with electrons. Because electrons in a supercon-
ductor are bound together in pairs, with a binding energy proportional to the gap, they can absorb
phonons only if the phonon frequency exceeds a critical value. As a consequence, ultrasound
attenuation is used as a tool for measuring the gap in a superconductor.

A final observation is that the calculation we have performed here is valid only if electron inter-
actions are negligible. That is, if τee is the effective time scale for electron scattering, then our
calculation is valid if ωqτee � 1. If this condition does not hold and τeeωq < 1, then sound
waves are attenuated via electron scattering rather than by phonon-induced electron-hole pairs. For
completeness, let us know evaluate τph. At T = 0, we showed that at intermediate frequencies,
neS 0(k, ω) = m2ω/πk~2. Because 〈Mq〉

2 ∼ q2Vet(q)/ωq, 1/τph ∼ q〈Vei(q)〉2. Focusing only on the
zero frequency part of the structure function, we find that εp = εp+k. For p = pF , the transferred
momentum is k = 2pF . Here, at low frequencies, τph is determined by particle scattering across
the Fermi surface.
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