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1 Electrical Conduction

The conductivity in a metal is measured by applying a voltage or an electric field to the material.
The resultant current density

j = σE (1)

is directly proportional to the electric field through the conductivity,σ. The current density is in the
direction of the carrier velocity,v. The constant of proportionality is the net charge density, −ene.
Consequently,

j = −neev (2)

Let us now express v in terms of E. In the absence of an electric field, 〈v〉 = 0 because v is
randomized. Let τ represent the collision time of the electron. That is, over a time period τ, an
electron is moving with constant velocity that we estimate as follows. The force exerted on an
electron by the electric field is simply −eE. The acceleration of the electron is,then, −eE/m. If the
acceleration is constant over a time τ, then the average velocity is vavg = −eEτ/m and the current
density is

j =
e2ne

m
Eτ = σE, (3)

or, equivalently,

σ =
nee2τ

m
. (4)

This is the Drude formula for the conductivity.

We have expressed the conductivity, then, in terms of a single unknown quantity, τ, the relaxation
or collision time. Experimentally, once the conductivity is measured, τ can be extracted. Listed
below are a few relaxation times for the alkali earth metals.

Element 77K 273K
Li 7.3 × 10−14s 8.8 × 10−15s
Na 1.7 × 10−13s 3.2 × 10−14s
K 1.8 × 10−13s 4.1 × 10−14s
Rb 1.4 × 10−13s 2.8 × 10−14s
Cs 8.6 × 10−14s 2.1 × 10−14s

We now want to develop a general theory that can account for the relaxation time and, hence,
the conductivity. In a pure metal, the primary source of resistance is via interactions with lattice
phonons. Any successful account of σ in a metal must explain the following: 1) σ is independent
of E for moderate values of E, 2) The wide variation of σ from metal to metal, 3) The Wiedemann-
Franz law that the ratio of κ/σ = T , where κ is the thermal conductivity, and 4) σ ∼ 1/T in most
metals with a transition to σ ∼ t−5 at T → 0. In this chapter, we focus entirely on the crossover
from 1/T to T−5 behavior at low temperatures.
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1.1 Boltzmann Equation

To proceed, we develop the Boltzmann transport theory. We introduce the distribution function
f (r,k, t), which defines the probability that a quantum “state” is occupied with momentum k and
position r at time t. Although we are interested in only one band, f can be generalized to include
all bands in a solid. The distribution function f specifies both the position and the momentum
of an electron in a quantum state. Adopting such a distribution function is valid strictly at long
wavelengths, that is, λ � ~vF/κBT . Otherwise, the uncertainity principle is violated.

Consider the volume element dkdr/(2π~)3 = dΩ. The product of this differential volume element
with f , f dΩ, defines the number of electrons in dΩ. In the problem at hand, interactions with
phonons alter the occupation in phase space. Let us refer to such processes as lattice collisions.
Clearly, d f /dt would be zero if no such collisions occured. In fact, for a solid in equilibrium, f is
simplify the Fermi-Dirac distribution. For the non-equilibrium case, f must be determined from
the general equations of motion. The total time derivative of f ,

d f
dx

=
∂ f
∂t

+ k̇.∇k f + ṙ.∇r f =
∂ f
∂t
|coll, (5)

is determined by all the terms that either implicitly or explicitly depend on time. This is the Boltz-
mann equation. Because each volume element should be equivalent, the average number of elec-
trons entering and leaving a volume element should be a constant. As a result, ∂ f

∂t = 0. In addition,
our system is homogeneous, even in the presence of an electric field. As a consequence, the spatial
derivative of f vanishes and

∂k
∂t
.∇k f =

∂ f
∂t
|coll (6)

the steady-state Boltzmann equation, results. Physically, ∂k
∂t is the force on the electrons in the

Fermi sea. In an electric field,

∂k
∂t

= −eE, (7)

and, consequently, all the electrons are accelerated equally by the field.

To apply this equation to an electron-lattice problem, we must include an analogous Boltzmann
equation is one in which the momentum term is absent, because in an unstrained crystal, there is
no force on phonons. Let g be the phonon distribution function. It follows that

∂g
∂t
|coll = ṙ.∇rg. (8)

In all of our calculations to follow, we will replace g by its equilibrium value. Hence, we will
not spend much time discussing g, though our treatment of f can be paralleled to solve for g.
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Figure 1: Electron-phonon collision terms that enter the Boltzmann equation.

Because f is determined by electron-phonon exchanges, the most general expression we can write
for the collisions is one in which all possible electron-phonon processes are summed over. Let
Weq represent an emission term and Waq a phonon absorption process with wave vector q. The
general collision terms that enter the Boltzmann equation are shown in Fig.(1) and can be written
as a gain-loss master equation,

∂ f
∂t
|coll =

∑
q

(Weq
k+q→k + Wa−q

k+q→k −Waq
k→k+q −We−q

k→k+q)

=
∑

q
[gain(k) − loss(k)],

(9)

for electron states with momentum k and k+q. From the exact expressions for W in Eqs.(?? 23 in
Lec-03) and (?? 24 in Lec-03), it is convenient to define

W0
q =

2π
~
〈Mq〉

2. (10)

We have assumed that the electron states are plane waves. Hence, αk,q = 1. The collision terms in
Eq.(10) are easily computed if they are grouped as emission-absorption pairs:
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∂ f
∂t
|coll =

∑
q

(
Weq

k+q→k −We−q
k→k+q

)
−

(
We−q

k→k+q −Wa−q
k+q→k

)
=

∑
q

W0
q
[
(1 − f (k))( f (k + q))(g(q) + 1)δ(εk − εk+q + ~ωq) − (1 − f (k + q)) f (k)g(q)δ(εk+q − εk − ~ωq)

]
+ W0

q
[
(1 − f (k)) f (k + q)g(−q)δ(εk − εk+q − ~ωq)

]
− (1 − f (k + q)) f (k)(g(−q) + 1)δ(εk+q − εk + ~ωq).

(11)

There are three common simplifications that are used to solve the Boltzmann equation for f k. The
first is to assume that g(q) = gequil, which is known as the Bloch assumption. The Bose-Einstein
distribution is just gequil. Let Nq = gequil = N−q. We also define

Wq(k,k′) = W0
q[δ(εk′ − εk + ~ωq)(Nq + 1) + Nqδ(εk′ − εk − ~ωq)]. (12)

The right-hand side of the Boltzmann equation now simplifies to

∂ f
∂t
|coll =

∑
q

[Wq(k + q,k) f (k + q)(1 − f (k)) −Wq(k,k + q) f (k)(1 − f (k + q))]. (13)

1.2 Relaxation-Time Approximation

In the next step, we assume that on average, f (k) is slowly varying when the field is applied. Colli-
sions with phonons return the system to the equilibrium Fermi-Dirac distribution function, f0 = nk.
We write f (k) as

f (k) ≡ nk + δ fk, (14)

with δ fk is the variation of f (k) induced by the electric field. We suspect that δ fk is proportional
to the acceleration, δk/δt. To see how this comes about, we make the ansatz that collision-induced
changes of f (k) relax the system back to nk with a mean relaxation time τ(k), such that

∂ f
∂t
|coll = −

δ fk
τ(k)

. (15)
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Note that introduction of a relaxation time at this stage can be done only at the expense of making τ
k-dependent. Using Eqs. (6) and (7) and linearizing with respect to the fluctuation δ fk, we find that

∂ f
∂t
|coll = −

δ fk
τ

= −eE.∇k f (k)

= −eE.∇kεk
δnk

δεk

= e
E.k
m

nk(1 − nk)β,

(16)

where we have used the free-particle dispersion relation, εk = k2/2m. Because δ fk = f (k) − nk,
we obtain

f (k) = nk + βδΦknk(1 − nk), (17)

with

δΦk = −e
E.k
m
τ(k). (18)

We see, then, that once τ(k) is determined, we can find the distribution function f (k) immediately
and that the conductivity can be obtained through the Drude formula.

1.3 Low-Temperature Resistivity

To simplify the Boltzmann equation, we observe that Wq(k,k′) obeys the symmetry relationship

Wq(k,k′)eβεk′ = Wq(k,k′)eβεk . (19)

This statement is simply one of detailed balance. An equivalent, more useful way of writing Eq.(19)
is

Wq(k,k′) = eβ(εk−εk′ )Wq(k′,k) (20)

=
nk′(1−nk)

nk(1−nk′ )
Wq(k′,k). (21)

This identity implies that the quantity
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Zq(k,k′) = Wq(k,k′)nk(1 − nk′) (22)

is symmetric with respect to interchange of its arguments. An immediate consequence of this
identity is that the collision terms in the Boltzmann equation vanish identically, when f (k) = nk:

Wq(k′,k)(1 − nk)nk′ −Wq(k,k′)(1 − nk′)nk = Zq(k′,k) − Zq(k,k′)
= 0.

(23)

The consequence of this identity are immediate. Recall that we have approximated f (k) as f (k) ≡
nk + βnk(1 − nk)δΦk. Hence, only the terms with at least a linear variation of δ f survive in the
Boltzmann equation:

∂ f
∂t
|coll =

∑
q

Wq(k′,k)(δ fk′(1 − nk) − nk′δ fk) − k⇔ k′

= β
∑

q
Zq(k′,k)[δΦk′(1 − nk′) − δΦknk − k⇔ k′]

= β
∑

q
Zq(k′,k)[δΦk′ − δΦk].

(24)

In derivative Eq.(24), we dropped the o(δΦ2) terms, thus obtaining the linearized Boltzmann equa-
tion.

As a result of the variation δΦk ∼ τ(k), the Boltzmann equation is in general an integral equation
that must be solved self-consistently by some ansatz. As in all integral equations, a variational
principle applies, and we are guaranteed that a trial solution for δφ will result in a distribution
function, f , that produces a higher energy than the true ground-state energy. In the relaxation-time
approximation,δΦk = −eE.kτ(k/m). In an electric field, the drift velocity is vd = −eEτ/m. As a
consequence, δΦk ≡ vd.k is known as the drift-velocity ansatz.Physically, this ansatz signifies that
the electrons are in equilibrium with a drifting distribution. The drifting distribution is equivalent
to the equilibrium Fermi-Dirac distribution with q → q − mvd. As depicted in Figure, the drift-
velocity ansatz amounts to an overall translation of the Fermi surface by an amount

proportional (in linear order) to mvd. We close the Boltzmann equation by averaging the collision
terms over the electron momentum:
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Figure 2: Equilibrium Fermi surface and the Fermi surface in the presence of a uniform electric
field. The drift-velocity ansatz states that once the electric field is turned on, the new Fermi-Dirac
distribution function is equivalent to the original one by simply translating ~q→ ~q − m~vd.

δ

δt
〈k〉|coll = 〈k̇〉 = 2

∫
k
∂ f
∂t
|coll

dk
(2π~)3

= −2
∫

k
dk

(2π~)3

f − f0
τ

= −2
∫

k
dk

(2π~)3

f0(k − mvd)
τ

= −
m
τ

vdne.

(25)

In deriving Eq. (25), we used the fact that 〈k〉 in equilibrium vanishes.

Noting that the collision terms are anti-symmetric with respect to interchange of k and k’, we find
upon substituting Eq. (25) into the Boltzmann equation that

−mvdne

τ
=
β

V

∑
k

k
∑
k′

Wq(k,k′)nk(1 − nk′)[vd.k′ − vd.k]

=
β

2V

∑
k

∑
k′

(k − k′)Wq(k,k′)nk(1 − nk′)[vd.k′ − vd.k]

= −
β

V

∑
k

∑
q

q(vd.q)W0
qnk(1 − nk+q)[δ(εk+q − εk + ~ωq) × (Nq + 1) + Nqδ(εk+q − εk − ~ωq)],

(26)
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with k′ = k + q. Recalling the definition of the free-particle structure function (see Eq. ?? 2 in
Lec-04), we reduce the linearized Boltzmann equation to

mvdne

τ
=

neβ

8π~

∑
q

q(vd.q)W0
q[S 0(q, ~ωq)Nq + (Nq + 1)S 0(q,−~ωq)]

=
neβ

4π~

∑
q

q(vd.q)W0
qNqS 0(q, ~ωq).

(27)

To simplify Eq. (27) further, we replace q(vd.q) with its angular average

〈q(q.vd)〉 =
1
3

q2vd (28)

Substitution of Eq. (28) into Eq. (27) results in the general expression

1
τ

=
β

24π2M~3mnenion

∫ qD

0

q6dq
~ωq
|Vel(q)|2

S 0(q, ~ωq)

eβ~ωq − 1
(29)

for the relaxation time. In Eq. (29), qD is the momentum cut-off on the phonon spectrum.

We need an expression for S 0 that captures the essential physics at low temperatures. We showed
in the previous chapter that at T = 0, S 0 ∝ 1/q. Asymptotically, this expression vanishes as q→ ∞
and, hence, is expected to be valid, as long as the phonon momentum is cut off. The Debye cut-off

in the relaxation time justifies our use of the T = 0 limit. Away from T = 0, the explicit temperature
dependence can be introduced by including the factor of (1 - exp

(
−β~ωq

)
), which appears in the

original definition of S 0(k, ω). Consequently, we write

S 0(q, ~ωq) =
m2~ωq

πne~2(1 − e−β~ωq)
. (30)

We also need an expression for Vel(q). In the Thomas-Fermi treatment of screening, we showed
that

Vel(q) = −
4πZe2

V(q2 + κ2
T F)

. (31)

At low temperatures, we focus on the limit (q→ 0) of Vel. Hence, we approximate Vel(q) with

Vel(q) = −
4πZe2

Vκ2
T F

= −
π2Z~3

VmpF
= −

Z
N (εF)

(32)
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The relaxation time can be written as

1
τ

=
Z2βm

24π3n2
e~3N2(εF)Mnion

∫ qD

0

q5 dq(
1 − e−β~ωq

) (
eβ~ωq − 1

) (33)

For the phonon spectrum, we use the linear-dispersion relationship, ωq = sq/~, where s is a con-
stant. Let x = βωq. With the observation that

1
(ex − 1) (1 − ex)

= −
∂

∂x
1

ex − 1
, (34)

we rewrite the relaxation time as

1
τ

= −
Z2βm

24π3~7n2
e MN2 (εF) (βs)6

∫ qD s~/kBT

0
x5 ∂

∂x
1

(ex − 1)

= α0T 5J5(TD/T ),
(35)

with

J5(y) = −

∫ y

0
x5dx

∂

∂x
1

ex − 1
, (36)

TD = qDs~/kB is the Debye temperature, and

α0 =
mZ2k5

B

~724π3n2
enionMN2 (εF) s6

(37)

There are two cases of interest. At low temperatures, TD/T >> 1, implying that the integral can be
extended to infinity, leaving

J5(∞) = −

∫ ∞

0
x5dx

∂

∂x
1

ex − 1
= 5!ζ(5)

(38)

where ζ(n) is the Riemann-Zeta function. As a consequence,

1
τ

= 5!ζ(5)α0T 5 (39)

for T << TD. From the Drude formula, we have the resistivity ρ ∼ 1/τ. We see, then that for
T << TD, the resistivity scales as ρ ∼ T 5. The origin of the T 5 contribution is as follows. A factor
of T 3 arises from the number of phonons present at T = 0. The remaining factor T arise from
momentum transfer and the fraction of electrons in the vicinity of TF that can scatter. Each of these
processes scales at T . Note the factor α0 correctly represents the scaling of the resistivity in terms
of the ion mass M, the electron density ne, and the density of states N(εF).
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Consider now the high-temperature limit. In this case, T >> TD, and upper limit in eq (36) is
y << 1 . We can the series expand the integrand to obtain

J5(y) = −

∫ y

0
x5dx

∂

∂x

(
1
x

+ · · ·

)
=

∫ y

0
x3dx =

y4

4
(40)

Because y = TD/T , we find that at high temperatures,

ρ ∼
1
τ
∝ T 5

(TD

T

)4
∼ T (41)

Linear behavior sets in for T/TD > 0.2. Of current interest is the linear-T resistivity in the normal
state of the high-temperature copper oxide materials. As this behavior persists until the onset of
superconductivity, the linear- T resistivity if of fundamentally different (and currently unknown)
origin than the high-temperature linear-T resistivity that results from phonon scattering.

Of course, normal nonmagnetic impurities also contribyte to the resistivity. When the concentration
(nimp) of nonmagnetic impurities is small, the first Born approximation can be used. In this limit,
impurity scattering contributes a constant term to the relaxation rate, proportional to εF at T = 0.
This is a reflection that scattering at normal impurities of charge Z, the basis result for the impuroty
relaxation rate is

1
τimp

∝
2nimpZ2εF

~ne
(42)

Consequently, disorder in a metal is expected to lead to a nonzero resistance at T = 0, which
is commonly referred to as the residual resistance in a metal. Of course, the situation changes
dramatically in the strong-disorder regime. In this limit, perturbation theory breaks down. A
transition to an Anderson localized state occurs when the strength of the disorder exceeds a critical
value for d > 2 (see Chapter 12). In the localized regime, the electronic states decay exponentially
with distance. For d ≤ 2, the transition is particulary striking, as any amount of disorder leads to
complete localization of all the electronic eigen-states. Localization of the eigenstates results in
a vanishing of the dc-conductivity and the onset of an insulating state. In three dimensions, the
disorder must exceed a critical value before insulating behaviour obtains. In an Anderson localized
system, charge carriers myst be thermally excited if they are to transport at all. Consequently,
activated transport typically obtains in insulators above T = 0.
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