PHY661: Advanced Solid State Physics II

Nature of the course: Theory

Full Marks: 100

4 CH (L60+T20)

Pass Marks: 50

Course Description:

This course aims at providing students with basic knowledge and skill in theoretical as well as experimental aspects of Solid State Physics.

Objectives:

- To acquaint student with the theoretical and experimental methods in Solid State Physics.
- To prepare them in developing skill to pursue further study and research in the field of physics.

Course Content:

1.	 Density functional theory: 1.1 The Hohenburg-Kohn theorem 		[6 hours]
	1.2	Kohn-Sham formalism	
	1.3	Local density and the generalized gradient approximation	
	1.4	Electronic structure calculations	
2.	Screening and plasmons;		[8 hours]
	2.1	Thomas-Fermi screening	
	2.2	Plasma oscillations	
	2.3	Linear response theory	
	2.4	Dielectric response function	
	2.5	Stopping power of a plasma	
3.	Bosonization:		[6 hours]
	3.1	Luttinger liquid	
	3.2	Pair binding	
	3.3	Excitation spectrum	
4.	Electron-lattice interaction:		[8 hours]
	4.1	Harmonic chain	
	4.2	Acoustic phonons	
	4.3	Electron-phono interaction	
	4.4	Ultrasonic attenuation	
	4.5	Electrical conduction	
	4.6	Phono drag	
	4.7	Sound propagation	
5.	Superconductivity:		[16 hours]
	5.1	Superconductivity: phenomenology	
	5.2	Electron-phono effective interaction	
	5.3	Model interaction	
	5.4	Cooper pairs	
	5.5	Fermi-liquid theory	
	5.6	Pair amplitude	

- 5.7 BCS ground state
- 5.8 Pair fluctuations
- 5.9 Ground state energy
- 5.10 Critical magnetic field
- 5.11 Energy gap
- 5.12 Quasi-particle excitation
- 5.13 Thermodynamics
- 5.14 Experimental applications
- 5.15 Josephson Tunneling

6. Quantum phase transition:

- 6.1 Quantum rotor model
- 6.2 Scaling
- 6.3 Mean-field solution
- 6.4 Landau-Ginzburg theory
- 6.5 Transport properties
- 6.6 Experiments

7. Quantum Hall Effect:

- 7.1 What is quantum about Hall effect
- 7.2 Landau levels
- 7.3 Role of disorder
- 7.4 Currents at the edge
- 7.5 Laughlin liquid

Text Books:

 Philip Phillips – Advanced Solid State Physics, Cambridge university Press, 2nd ed. (2012), Cambridge

Reference Books:

- 1. Taylor Philip & Heinonen Olle **Quantum approach to condensed matter physics**, Cambridge university Press, (2002).
- 2. Altland Alexander and Simons Ben **Condensed matter field theory**; Cambridge university Press, south asian ed. (2008).
- Wen Xiao-Gang Quantum field theory of many-body systems, Oxford university Press, (2004).
- 4. Mahan Gerald Many-particle Physics, 3rd edition, Springer (India), Pvt. Ltd., New Delhi (1990).

[8 hours]

[8 hours]