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Figure 1: Thomson’s model of the atom: (a) A sphere of positive charge with electrons embedded in it so that the net
charge would normally be zero. The atom shown would have been phosphorus. (b) An a particle scattered by such an
atom would have a scattering angle θ much smaller than 1◦

The Nuclear Atom, Rutherford Scattering and it’s Conclusion.
Rutherford’s alpha particle scattering experiments showed that the entire positive charge in atom is
concentrated to very small region at centre. Rutherford arrived at a formula, describing the scattering of
alpha particles by thin foils on the bsis of his atomic model, that agreed with the experimental results.
The derivation of this formula both illustrates the application of fundamental physical laws in a novel
setting and introduces certain notions, such that of the cross section for an interaction, that are important
in many other aspects of modern physics.

Rutherford began by assuming that the alpha particle and the nucleus it interacts with are both small
enough to be considered as point masses and charges; that the electrostatic repulsive force between alpha
particle and nucleus (which are both positively charged) is the only one acting; and that the nucleus is
so massive compared with the alpha particle that it does not move during their interaction. Owing to
the variation of the electrostatic force with 1/r2, where r is the instantaneous separation between alpha
particle and nucleus, the alpha particle’s path is a hyperbola with the nucleus at the outer focus. The
impact parameter b is the minimum distance to which the alpha particle would approach the nucleus
if there were no force between them, and the scattering angle θ is the angle between the asymptotic
direction of approach of the alpha particle and asymptotic direction in which it recedes.

Figure 2: Geometrical relationships in Rutherford scattering
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Figure 3: Impact parameter and scattering angle.

Figure 4: Geometrical relationships in Rutherford scattering

As a result of the impulse
∫

F dt
given it by the nucleus, the momen-
tum of the alpha particle changes by
∆p from the initial value p1 to the fi-
nal value p2.

~∆p = ~p2 − ~p1 =

∫
~F dt (1)

Because the nucleus remains sta-
tionary during the passage of the al-
pha particle, the alpha-particle ki-
netic energy remains constant; hence
the magnitude of its momentum also
remains constant,

p1 = p2 = mv

Here v is the alpha-particle velocity far from the nucleus. From figure we see that, according to the law
of sines,

∆p
sinθ

=
mv

sin
(
π−θ

2

)
∆p

2 sin
(
θ
2

)
cos

(
θ
2

) =
mv

cos
(
θ
2

)
∆p = 2mv sin

(
θ
2

)
(2)

Because the impulse
∫
~F dt is in the same direction as the momentum change ∆p, its magnitude is,∫

F dt =

∫
F cosφ dt (3)

where φ is the instantaneous angle between F and ∆p along the path of the alpha particle. Inserting
equation (2) and (3) in equation (1),

2mv sin
θ
2

=

∫
∞

0
F cosφ dt

To change the variable on the right-hand side from t to φ, we note that the limits of integration will
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change to − 1
2 (π − θ) and + 1

2 (π − θ), corresponding to φ at t = 0 and t = ∞ respectively, and so,

2mv sin
θ
2

=

∫ + 1
2 (π−θ)

−
1
2 (π−θ)

F cosφ
dt
dφ

dφ (4)

The quantity dφ
dt is just the angular velocity ω of the alpha particle about the nucleus.. The electrostatic

force exerted by the nucleus on the alpha particle acts along the radius vector joining them, and so there
is no torque on the alpha particle and its angular momentum mωr2 is constant. Hence,

mωr2 = constant

= mr2 dφ
dt

= mvb

from which we see that
dt
dφ

=
r2

vb
Substituting this expression for dt/dφ in equation (4),

2mv2b sin
θ
2

=

∫ + 1
2 (π−θ)

−
1
2 (π−θ)

F r2 cosφ dφ (5)

As we recall, F is the electrostatic force exerted by the nucleus on the alpha particle. The charge on the
nucleus is Ze, corresponding to the atomic number Z, and that on the alpha particle is 2e. Therefore,

F =
1

4πε0

2Ze2

r2

and

4πε0mv2b
Ze2 sin

θ
2

=

∫ + 1
2 (π−θ)

−
1
2 (π−θ)

cosφ dφ

= 2 cos
θ
2

The scattering angle θ is related to the impact parameter b by the equation

cot
θ
2

=
2πε0mv2

Ze2 b

It is more convenient to specify the alpha-particle kinetic energy T(= 1
2 mv2),

cot
θ
2

=
4πε0 T

Ze2 b (6)

This is the relation between scattering angle and impact parameter.
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Rutherford Scattering Formula
All alpha particles approaching a target nucleus with an impact parameter from 0 to b will be scattered
through an angle of θ or more. This means that an alpha particle that is initially directed anywhere
withing the area πb2 around a nucleus will be scattered through θ or more; the area πb2 is called the
cross section for the interaction. The general symbol for cross section is σ.

σ = πb2 (7)

Now we consider a foil of thickness t that contains n atoms per unit volume. An alpha-particle beam
incident upon an area A therefore encounters ntA nuclei. The aggregate cross section for scatterings of
θ or more is the number of target nuclei ntAσ.
Hence the fraction f of incident alpha particles scattered by θ or more is,

f =
alpha particles scattered by θ or more

incident alpha particles

=
aggregate cross section

target area
=

ntAσ
A

= ntπb2

Substituting for b from equation (6),

f = πnt
(

Ze2

4πε0T

)2

cot2 θ
2

(8)

In the above calculation it was assumed that the foil is sufficiently thin so that the cross sections of
adjacent nuclei do not overlap and that a scattered alpha particle receives its entire deflection from an
encounter with a single nucleus.

If a total of Ni alpha particles strike the foil during the course of the experiment, the number scattered
into dθ is Ni d f .

The number N(θ) per unit area striking the screen at θ is

N(θ) =
Ni |d f |

ds

From equation (8),

d f = πnt
(

Ze2

4πε0T

)2

cot
θ
2

csc2 θ
2

dθ

And,

ds = 2πr sinθ rdθ = 4πr2 sin
θ
2

cos
θ
2

Therefore,

N(θ) =
Ni πnt

(
Ze2

4πε0T

)2
cot θ2 csc2 θ

2 dθ

4πr2 sin θ
2 cos θ

2 dθ

N(θ) =
Ni n t Z2 e4

(8πε0)2 r2 T2 sin4
(
θ
2

) (9)

Equation (9) is the Rutherford scattering formula.
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Electron Orbits

The Rutherford model of the atom, so convincingly confirmed by experiment, postulates a tiny, massive,
positively charged nucleus surrounded at a relatively great distance by enough electrons to render the
atom, as a whole, electrically neutral. Thomson visualized the electrons in his model atom as embedded
in the positively charged matter that fills it, and thus as being unable to move. The electrons in Ruther-
ford’s model atom, however, cannot be stationary, because there is nothing that can keep them in place
against the electrostatic force attracting them to the nucleus. If the electrons are in motion around the
nucleus, however, dynamically stable orbits are possible.

Consider an electron of charge −e moving in a circular orbit of radius r around a positively charged
nucleus having charge +e. Then the centripetal force holding the electron in the orbit is provided by
electrostatic force.

mv2

r
=

1
4πε0

e2

r2 ⇒ v =
e

√
4πε0mr

(10)

The total energy E of the electron in a hydrogen atom is the sum of its kinetic energy and its potential
energy

KE(T) =
1
2

mv2 and PE(V) = −
e2

4πε0r
Hence,

Total Energy(E) = T + V =
mv2

2
−

e2

4πε0r

Substituting for v,

E =
e2

8πε0r
−

e2

4πε0r
⇒ E = −

e2

8πε0r
(11)

The total energy of an atomic electron is negative; this is necessary if it is to be bound to the nucleus. If
E were greater than zero, the electron would have too much energy to remain in a closed orbit about the
nucleus.

Experiments indicate that 13.6eV is required to separate a hydrogen atom into a proton and an
electron; that is, its binding energy E is −13.6eV. Using this value of energy we can estimate orbital
radius of electron in hydrogen atom.

r = −
e2

8πε0E
⇒ r = 5.3 × 10−11m

The atomic radius of this order of magnitude agrees with estimates made in other ways too.

Few points to be noted:
1. The above analysis is straightforward application of Newton’s law of motion and Coulomb’s law of

electric force -both from classical physics - and is in accord with the experimental observation that
atoms are stable.

2. However, it is not in accord with electromagnetic theory-another pillar of classical physics- which
predicts that accelerated electric charges radiate energy in the form of electromagnetic waves.

3. An electron pursuing a curved path is accelerated and therefore should continuously lose energy,
rapidly spiraling into the nucleus. Whenever they have been directly tested, the predictions of
electromagnetic theory have always agreed with experiment.

4. Yet the atoms do not collapse.
5. This contradiction can mean only one thing: The laws of physics that are valid in the macroscopic

world do not hold true in the microscopic world of the atom.
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Bohr Atom
Bohr’s Postulates

Figure 5: Bohr’s atom

Postulate 1 An electron cannot revolve round
the nucleus in all possible orbits as suggested by
classical theory. The electron can revolve round
the nucleus only in those allowed or permissible
orbits for which the angular momentum of the
electrons is an integral multiple of h

2π , where h
is Planck’s constant.

If m is the mass of electron and v is velocity
of the electron in an orbit of radius r, then,

Angular momentum(L) = mvr = n
h

2π
= n~

L = n~

where n is an integer and can take values n =
1, 2, 3, 4, ... It is called principal quantum num-
ber. This equation is called Bohr’s quantization
condition.

Postulate 2 When electron revolves in permitted orbits they do not radiate energy. An atom radiates
energy only when an electron jumps from a higher energy state to the lower energy state and the energy
is absorbed, when it jumps from lower to higher energy orbit.

If En1 and En2 are energies associated with first and second orbits respectively, then the frequency ν
of the radiation emitted is given by

ν =
En2 − En1

h
This is called Bohr’s frequency condition.

Bohr’s Theory of Hydrogen Atom

Bohr assumed that a hydrogen atom consists of a nucleus with one unit positive charge +e (i.e. a pro-
ton)and a single electron of charge −e, revolving around it in a circular orbit of radius r. The electrostatic
force of attraction between the proton and the electron is given by

F =
1

4πε0

e2

r2 (12)

If m and v are mass and velocity of the electron in the orbit, then the centripetal force required by the
electron to move in circular orbit of radius r is given by

F =
mv2

r
(13)

The electrostatic force of attraction between the electron and the nucleus provides the necessary cen-
tripetal force. Therefore,

mv2

r
=

1
4πε0

e2

r2 (14)

According to Bohr’s first postulate,

mvr = n
h

2π
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v =
nh

2πrm
(15)

v2 =
n2h2

4π2r2m2

substituting this value ofv2 in equation (3), we get

m
r

(
n2h2

4π2r2m2

)
=

1
4πε0

e2

r2

r =
ε0n2h2

πme2 (16)

Radius of the nth permissible orbit for hydrogen is given by

rn =
ε0n2h2

πme2 (17)

As n = 1, 2, 3, .... it follows from equation (6) that the radii of the stationary orbits are proportional to n2.

Bohr Radius
The radius of the innermost orbit in hydrogen atom is called Bohr’s radius and is denoted by a00.
For n = 1,

r = a0 =
ε0h2

πme2

Substituting the known values of ε0, h, m, and e, we get,

a0 = 0.529Å

rn = 0.529 × n2 Å (18)

1Å = 10−10m

Velocity of the Electron
The velocity of the electron in the nth orbit, vn is given by

vn =
nh

2πrnm

Substituting the value of rn from equation (6) we get,

vn =
nh

2πm

(
πme2

ε0n2h2

)

vn =
e2

2ε0nh
(19)

Therefore vn ∝
1
n , the electrons closer to the nucleus move with higher velocity than lying farther.

Energy of the Electron in nth orbit
As electron is revolving round the nucleus, it has kinetic energy.

K.E. =
1
2

mv2
n
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And,

P.E. = −
1

4πε0

e.e
r2

n
Therefore, total energy of the electron in the nth orbit is

En = K.E. + P.E.

En =
1
2

mv2
n −

1
4πε0

e.e
r2

n
Substituting values of rn and vn from (6) and (8), we get,

En = −
me4

8ε2
0n2h2

(20)

Bohrs Interpretation of the Hydrogen Spectrum
If an electron jumps from an outer orbit n2 of higher energy level to an inner orbit n1 of lower energy
level, the energy of photon of the radiation emitted is given by,

hν = En2 − En1

where En2 and En1 are energies of the electron in the stationary orbits then

En1 = −
me4

8ε2
0n2

1h2
and En2 = −

me4

8ε2
0n2

2h2

therefore, the energy of photon emitted is given by

hν =

− me4

8ε2
0n2

2h2

 − − me4

8ε2
0n2

1h2

 ⇒ hν =
me4

8ε2
0h2

 1
n2

1

−
1
n2

2


Therefore,

ν =
me4

8ε2
0h3

 1
n2

1

−
1
n2

2

 (21)

Wavenumber(ν): Reciprocal of wavelength of radiation is called wavenumber. i.e. ν = 1
λ

ν =
1
λ

=
f
c

Therefore,

ν =
ν
c

=
me4

8ε2
0ch3

 1
n2

1

−
1
n2

2


ν = R

 1
n2

1

−
1
n2

2

 (22)

where R = me4

8ε2
0ch3 known as Rydberg’s constant. The value of Rydberg’s constant is 1.097 × 107m−1

Spectral Series of Hydrogen Atom

When an electron jumps from the higher energy state to the lower energy state, the difference of energies
of two states is emitted as a radiation of definite frequency. It is called spectral line. The spectral lines
are divided into a number of series.
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Figure 6: Spectral series of Hydrogen atom

1. Lyman Series The spectral lines of this se-
ries correspond to the transition of an electron
from some higher energy state to the inner-
most orbit (n = 1). Therefore, for Lyman series
n1 = 1 and n2 = 2, 3, 4, 5, .....

2. Balmer Series The spectral lines of this se-
ries correspond to the transition of an electron
from some higher energy state to the orbit hav-
ing n = 2. Therefore, for Balmer series n1 = 2
and n2 = 3, 4, 5, 6....

3. Paschen Series The spectral lines of this se-
ries correspond to the transition of an electron
from some higher energy state to the orbit hav-
ing n = 3. Therefore, for Paschen series n1 = 3
and n2 = 4, 5, 6, 7....

4. Brackett Series The spectral lines of this se-
ries correspond to the transition of an electron
from some higher energy state to the orbit hav-
ing n = 4. Therefore, for Brackett series n1 = 4
and n2 = 5, 6, 7, 8....

5. P-fund Series The spectral lines of this series
correspond to the transition of an electron from
some higher energy state to the orbit having n =
5. Therefore, for P-fund series n1 = 5 and n2 = 6, 7, 8, ....

Limitations of Bohrs Theory of Hydrogen Atom
1. Elliptical orbits are possible for the electron orbits, but Bohrs theory does not tell us why only

elliptical orbits are possible.
2. Bohrs theory does explain the spectra of only simple atoms like hydrogen but fails to explain the

spectra of multi-electron atoms.
3. The fine structure of certain spectral lines of hydrogen could not be explained by Bohrs theory.
4. It does not explain the relative intensities of spectral lines.
5. This theory does not account for the wave nature of electrons.
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Franck-Hertz Experiment

Figure 7: Schematic of the apparatus used in the
Franck-Hertz experiment to show the quantization
of the internal energy of atoms.

The existence of discrete energy levels in atoms
was demonstrated directly by James Franck and
Gustav Hertz in 1914.

A schematic of the experimental set-up is
shown in Figure. The essential part of the ap-
paratus consists of a tube containing vapor of
the element under study. The tube contains
three electrodes: a filament (F) that provides
electrons when heated, a plate (P), and a grid
(G). A grid is a charged screen that can at-
tract or repel electrons but, because most of it
is open space, the majority of the electrons pass
through it. A variable accelerating voltage V0 is
applied between the filament and the grid. As
a consequence of this potential difference, the
electrons will reach the grid (in the absence of
collisions) with a kinetic energy Ek = eV0. After
reaching the grid the majority of these electrons will go through the holes in the grid, be collected by
the plate P, and contribute to the plate current i, which can be measured by the ammeter A. A small,
constant retarding voltage Vr(≈ 1V) is applied between the plate and the grid. If Vr > V0, the electrons
will be turned back before they can reach the plate and they will not contribute to the current measured
by A. But even if Vr < V0, the electrons will not be able to reach the plate if they lose enough kinetic
energy through collisions with the atoms in the tube as they travel between the filament and the grid.

Figure 8: Dependence of the plate current i (mea-
sured by the ammeter A in the apparatus of Figure
1) on the accelerating voltage V0.

In the absence of any vapor, that is, a vac-
uum, the i−V0 characteristics are those of a typ-
ical vacuum tube. This dependence is shown by
the dashed line of Figure 2. If vapor of some el-
ement is present in the tube, one observes a se-
ries of fairly sudden dips superimposed on the
monotonic vacuum curve. The solid curve in
Figure 2 shows this effect for the case where
mercury vapor is present in the tube.

The fact that there is no drop in the cur-
rent until certain voltage is reached (V0 = 4.9V
in this case) indicates that the electrons do not
lose energy through collisions until they have a
particular value of kinetic energy (4.9eV in this
case).

If the gas atoms in the tube can have a con-
tinuous distribution of internal energy states,
the transfer of kinetic energy from the bom-
barding electrons to the atoms could and should
occur regardless of the energy of the electrons,
that is, the drop in the current should occur for any value of V0. The fact that the drop occurs only when
V0 = 4.9V (and therefore the Ek of the electrons is 4.9eV) indicates that the first excited state of the gas
atom used in the tube is 4.9eV above the ground state. As V0 increases beyond the 4.9V, the current
begins to increase again because, although the electrons can and do collide inelastically and lose 4.9eV
of energy, they still have enough energy remaining to overcome the small retarding voltage Vr. When
V0 = 2×4.9V or 3×4.9V, or so on, dips in the current occur again because now the electrons can undergo
two, three, or more inelastic collisions with the gas atom; in each collision they lose 4.9eV.
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Figure 9: Atomic energy levels of a mercury atom

This interpretation is corroborated by the
electromagnetic radiation emitted by Hg atoms.
There should be a spectral line whose frequency
is given by hν = 4.9eV or λ = 2530Å. Such
a wavelength is found in the spectrum of Hg.
An energy diagram for Hg is shown in Fig-
ure 3. The energy difference ∆E between the
first excited state and the ground state is ∆E =
10.4eV − 5.5eV = 4.9eV.

Bohr’s Correspondence Principle

The principles of quantum physics, so differ-
ent from those of classical physics in the micro-
scopic world that lies beyond the reach of our
senses. Nevertheless, the quantum physics should yield results identical with those of classical physics in
the domain where experiment indicates that the classical physics is valid.

According to electromagnetic theory an electron moving in a circular orbit radiates electromagnetic
waves whose frequencies are equal to its frequency of revolution and to harmonics of that frequency. In
a hydrogen atom the electron’s speed is

v =
e

√
4πε0mr

Hence the frequency of revolution f of the electron is,

f =
electron speed

orbit circumference

=
v

2πr

=
e

2π
√

4πε0mr3

The radius r of a stable orbit is given in terms of its quantum number n by,

rn =
n2h2ε0

πme2

and so the frequency of revolution is,

f =
me4

8ε2
0h3

( 2
n3

)
(23)

The energy of photon emitted when an electron jumps from n2 orbit to n1 orbit is given by

ν =
me4

8ε2
0h3

 1
n2

1

−
1
n2

2


If n2 = n and n1 = n − 1

ν =
me4

8ε2
0h3

(
1

(n − 1)2 −
1
n2

)

=
me4

8ε2
0h3

(
n2
− (n − 1)2

n2(n − 1)2

)
=

me4

8ε2
0h3

(
n2
− n2 + 2n − 1
n2(n − 1)2

)
=

me4

8ε2
0h3

(
2n − 1

n2(n − 1)2

)
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For very large n, (2n − 1) ≈ 2n, and n − 1 ≈ n. Therefore,

ν ≈
me4

8ε2
0h3

(2n
n4

)
=

me4

8ε2
0h3

( 2
n3

)
(24)

Equation (24) is identical to equation (23). This shows that the quantum theory agrees with classical
theory in the limit of large quantum numbers. This verifies Bohr’s correspondence principle.

Sommerfeld Atomic Model

To explain the observed fine structure of spectral lines, Sommerfeld proposed an atom model. The
assumption of this atomic model are:-

1. The path of electron around the nucleus of an atom is general eliptical. The circular orbit of Bohr’s
theory are special case of elliptical orbit.

2. While revolving in elliptical orbit there is variation of speed of electron due to which there is
relativistic variation in the most of electron.

Elliptical orbit of Hydrogen atom

Figure 10: Elliptical Orbit of Electron

Consider (r, φ) be the instantaneous position of
electron with respect to nucleus being at one of
the foci of ellipse. The quantization condition
associated with two coordinate r and φ are.∮

pφdφ = nφh.....(1)

∮
prdr = nrh.....(2)

where,
pφ = angular momentum associated with
change in φ = mr2 dφ

dt
nφ = angular or Azimuthal quantum number
Pr = radial momentum m dr

dt
nr = radial quantum number

The principle quantum number is related with nφ and nr as

nφ + nr = n · · · · · · · · · (3)

Evalution of
∮

pφdφ = nφh

∮
pφdφ = nφh ⇒ pφ

∮
dφ = nφh [ ∵ pφ is constant, being angular moment in central force ]

2φ · pφ = nφh ⇒ pφ =
nφh
2π
· · · · · · · · · (4)
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Evalution of
∮

prdr = nrh

prdr = m.
dr
dt
· dr = m

dr
dφ
·

dφ
dt
·

dr
dφ
· dφ = m

( dr
dφ

)2

·

(dφ
dt

)
·dφ

= m
( dr

dφ

)2

·

( pφ
mr2

)
dφ

=
(1

r
dr
dφ

)2

· pφdφ · · · · · · · · · (5)

We have from polar equation of ellipse,

1
r

=
1 + ε cosφ
a(1 − ε2)

· · · · · · · · · (6)

where, a =semi-major axis, ε = ecentricity
Taking log on both side

− log r = log(1 + ε cosφ) − log[a(1 − ε2)]

Differentiating with respect to φ, we get,

−d(log r)
dr

·
dr
dφ

=
d log(1 + ε cosφ

d(1 + ε cosφ)
·

d(1 + ε cosφ)
dφ

− 0

−1
r
·

dr
dφ

=
1

(1 + ε cosφ)
· (0 − ε sinφ)

1
r

dr
dφ

=
ε sinφ

(1 + ε cosφ)
· · · · · · · · · (7)

From (5) and (7),

Prdr =
( ε sinφ

1 + ε cosφ

)2

pφdφ

∮
pr · dr =

∫ 2π

0

( ε sinφ
1 + ε cosφ

)2

pφdφ · · · · · · · · · (8)

Let, I =

∫ 2π

0

ε2sin2φ

(1 + εcosφ)2 dφ · · · · · · · · · (9)

We have,

d[uv] = udv + vdu ⇒ udv = d[uv] − vdu ⇒

∫
u.dv = [uv] −

∫
vdu · · · · · · · · · (10)

put,

ε sinφ = u, ε cosφ dφ = du and dv =
ε sinφdφ

(1 + ε cosφ)2 ⇒ v =
1

1 + ε cosφ
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Substituting above equation in (10)

I =

∫ 2π

0
ε sinφ ·

ε sinφ.dφ
(1 + cosφ)2 =

[ ε sinφ
1 + ε cosφ

]2π

0
−

∫ 2π

0

ε cosφdφ
1 + ε cosφ

= −

∫ 2π

0

ε cosφ
1 + ε cosφ

· dφ

=

∫ 2π

0

[
−(1 + ε cosφ)

1 + ε cosφ
+

1
1 + ε cosφ

]
dφ =

∫ 2π

0

1
1 + ε cosφ

· dφ −
∫ 2π

0
1dφ · · · · · · · · · (11)

Using the value of standard integral
∫ 2π

0
dφ

1+εcosφ = 2π
√

1−ε2
,

I =
2π
√

1 − ε2
− [φ]2π

0 ⇒ I =
2π
√

1 − ε2
− 2π · · · · · · · · · (12)

Substituting equation (12) and (9) in (8)

∮
prdr = pφ

( 2π

(1 − ε2)
1
2

− 2π
)

= nrh

∮
prdr =

nφh
2π
· 2π

( 1

(1 − ε2)
1
2

− 1
)

= nrh

nφ

(1 − ε2)
1
2

= nφ + nr

nφ

(1 − ε2)
1
2

= n [from eqn(3)]

nφ
n

= (1 − ε2)
1
2 ⇒

n2
φ

n2 = (1 − ε2) =
b2

a2 [for and ellipse b2 = a2(1 − ε2)]

nφ
n

=
b
a
· · · · · · · · · (13)

Equation (13) determines the shape and number of allow electronic orbit. The allowed elliptical orbits
are those for which the ratio of major and minor axes is that of two integers.

Figure 11: Elliptical Orbits of Electron

Few points to be noted:
1. When nφ = 0 ⇒ b = 0, the path of

electronic orbit straight line is passing
through nucleus. But electron doesn’t
pass through nucleus (nφ , 0).

2. Since b and a are always positive nφ can
not be negative.

3. Since b ≤ a ⇒ nφ ≤ n. When b = a ⇒
nφ = n, the path of electronic orbit is cir-
cular. When b < a ⇒ nφ < n, the path of
electronic orbit is eliptical.
(a) When n = 1 ⇒ nφ = 1. The orbit
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is circular nr = 0. This is the case of
Bohr’s theory.

(b) When n = 2⇒ nφ = 2 Two orbits are
possible.

i. n = 2, nφ = 2 ⇒ a = b Orbit is
circular

ii. n = 2, nφ = 1 ⇒ b < a ⇒ b = a
2

Orbit is elliptical
(c) When n = 3, nφ = 3, 2, 1 Three possi-

ble orbits.
i. n = 3, nφ = 3⇒ b = a Orbit circular

ii. n = 3, nφ = 2⇒ b = 2
3 a Orbit is elliptical.

iii. n = 3,nφ = 1⇒ b = 1
3 a Orbit is elliptical.

Usually the allowed orbits are described by giving values of n and nφ. The value of azimuthal quantum
number nφ is described by letters s, p, d, f , etc. In this notation, the orbit determined by n = 3 and nφ = 1
is represented by 3s. Similarly, 4d will represent the orbit n = 4 and nφ = 3.

Total Energy

Total energy of a single electron in an orbit is given by

En = K.E. + P.E.

=
1
2

m
[(dr

dt

)2

+
(
r

dφ
dt

)2]
−

1
4πε0

Ze2

r
· · · · · · · · · (1)

As we know,

pr = m
dr
dt
⇒

dr
dt

=
pr

m
and pφ = mr2 dφ

dt
⇒

dφ
dt

=
pφ

mr2 · · · · · · · · · (2)
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K.E. =
1
2

m
[(pr

m

)2
+

(
r

pφ
mr2

)2]
=

1
2m

[
p2

r +
1
r2 p2

φ

]

=
p2
φ

2mr2

[ r2p2
r

p2
φ

+ 1
]

=
p2
φ

2mr2

[ r2

p2
φ

(
pφ
r2

dr
dφ

)2

+ 1
]

=
p2
φ

2mr2

[(1
r

dr
dφ

)2

+ 1
]

=
p2
φ

2mr2

( ε sinφ
(1 + ε cosφ)

)2

+ 1

 ;
[
∵

1
r

dr
dφ

=
ε sinφ

(1 + ε cosφ)

]

=
p2
φ

2m

(
1 + ε cosφ
a(1 − ε2)

)2 ( ε sinφ
(1 + ε cosφ)

)2

+ 1

 ;
[
∵

1
r

=
1 + ε cosφ
a(1 − ε2)

]

=
p2
φ

2m a2(1 − ε2)2

(1 + ε cosφ
)2

(
ε sinφ

(1 + ε cosφ)

)2

+
(
1 + ε cosφ

)2


K.E. =
p2
φ

2m a2(1 − ε2)2

[
ε2 sin2 φ + 1 + 2ε cosφ + ε2 cos2 φ

]

=
p2
φ

2m a2(1 − ε2)2

[
1 + ε2 + 2ε cosφ

]

K.E. =
p2
φ

2m a2(1 − ε2)2

[
1 + ε2 + 2ε cosφ

]
· · · · · · · · · (3)

Similarly,

P.E. = −
1

4πε0

Ze2

r
= −

1
4πε0

Ze2

(
1 + ε cosφ
a(1 − ε2)

)
· · · · · · · · · (4)
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Therefore,

En = K.E. + P.E. =
p2
φ

2m a2(1 − ε2)2

[
1 + ε2 + 2ε cosφ

]
−

1
4πε0

Ze2

(
1 + ε cosφ
a(1 − ε2)

)

En =
p2
φ

2m
1

a2(1 − ε2)2 · (1 + ε2 + 2εcosφ) −
1

4πε0
·

ze2(1 + εcosφ)
a(1 − ε2)

En =
[ p2

φ(1 + ε2)

2ma2(1 − ε2)2 −
ze2

4πε0a(1 − ε2)

]
+

[ p2
φε

ma2(1 − ε2)2 −
ze2ε
4πε◦

1
a(1 − ε2)

]
cosφ · · · · · · · · · (5)

Due to presence of cosφ in the expression of total energy, total energy becomes variable. However,
according to conservation of energy total energy should be constant. Therefore, the coefficient of cosφ
must be zero.

p2
φε

ma2(1 − ε2)2 −
ze2ε

4πε◦a(1 − ε2)
= 0 ⇒

ε

a(1 − ε2)

[ p2
φ

ma(1 − ε2)
−

ze2

4πε◦

]
= 0

[ p2
φ

ma(1 − ε2)
−

ze2

4πε◦

]
= 0 ⇒

p2
φ

ma(1 − ε2)
=

Ze2

4πε0
· · · · · · · · · (6)

a =
p2
φ 4πε0

Ze2m(1 − ε2)
⇒ a =

(
nφh
2π

)2
4πε0

Ze2m
( nφ

n

)2

[
∵

nφ
n

= (1 − ε2)
1
2

]

∴ a =

(
n2h2ε0

πmZe2

)
· · · · · · · · · (7)

Therefore,

En =
[ p2

φ(1 + ε2)

2ma2(1 − ε2)2 −
Ze2

4πε0a(1 − ε2)

]
=

p2
φ

ma(1 − ε2)
1 + ε2

2a(1 − ε2)
−

Ze2

4πε◦a(1 − ε2)
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En =
Ze2

4πε0

1 + ε2

2a(1 − ε2)
−

Ze2

4πε◦a(1 − ε2)

∵ p2
φ

ma(1 − ε2)
=

Ze2

4πε0
(from equaiton (6))


=

Ze2

4πε0a(1 − ε2)

(1 + ε2

2
− 1

)

=
Ze2

4πε0a(1 − ε2)

(
ε2
− 1
2

)

=
−Ze2

4πε02a
=
−Ze2

8πε0
·
πmZe2

n2h2ε0

En =
−me4Z2

8ε2
◦n2h2

· · · · · · · · · (8)

Thus, Non-relativistic Sommerfeld atomic model gives the same energy as in Bohr’s theory. This
means that the theory of elliptical orbits introduces no new energy levels, other than those given by
Bohr’s theory of circular orbits. No new spectral lines, which would explain the fine structure, are to be
expected because of this multiplicity of orbits.

Sommerfeld proceeded further to find the solution on the basis of variation of the mass of the electron
with velocity.

Sommerfeld’s relativistic correction
Sommerfeld pointed out that origin of the fine structure of the spectral lines of the hydrogen like atoms
was due to the relativistic variation of the mass of the electron. It is apparent that the velocity of electron
in an atom is comparable to the velocity of light and therefore, relativistic effects are significant.

According to the theory of relativity, the mass of particle m moving with a velocity v is related to its
rest mass is given by

m =
m0√
1 − v2

c2

Applying relativistic effect in the Sommerfeld atomic model, the energy of electron is calculated to be,

En =
−me4Z2

8ε2
◦n2h2

[
1 +

Z2α2

n2

(
n

nφ
−

3
4

)]
· · · · · · · · · (9)

Where α = e2

2ε0ch = 1
137.04 , α is equal to the ratio of velocity of the electron in the first Bohr orbit Hydrogen

to the velocity of light c. It is called fine structure constant. The first term in equation (9) is the energy
of the electron in the orbit with the principal quantum number n. The second term is the Sommerfeld
relativistic correction. This term shows that the energy does depend on the azimuthal quantum number
nφ. This results in a splitting of the energy levels of the atom.

Sommerfeld’s relativistic calculation based on the Bohr model agrees with the experimental measure-
ments of fine structure for hydrogen, but the agreement turned out to be accidental since this calculation
predicts fewer lines than are seen for other atoms.


